nixpkgs/nixos/doc/manual/configuration/luks-file-systems.section.md

116 lines
3.9 KiB
Markdown

# LUKS-Encrypted File Systems {#sec-luks-file-systems}
NixOS supports file systems that are encrypted using *LUKS* (Linux
Unified Key Setup). For example, here is how you create an encrypted
Ext4 file system on the device
`/dev/disk/by-uuid/3f6b0024-3a44-4fde-a43a-767b872abe5d`:
```ShellSession
# cryptsetup luksFormat /dev/disk/by-uuid/3f6b0024-3a44-4fde-a43a-767b872abe5d
WARNING!
========
This will overwrite data on /dev/disk/by-uuid/3f6b0024-3a44-4fde-a43a-767b872abe5d irrevocably.
Are you sure? (Type uppercase yes): YES
Enter LUKS passphrase: ***
Verify passphrase: ***
# cryptsetup luksOpen /dev/disk/by-uuid/3f6b0024-3a44-4fde-a43a-767b872abe5d crypted
Enter passphrase for /dev/disk/by-uuid/3f6b0024-3a44-4fde-a43a-767b872abe5d: ***
# mkfs.ext4 /dev/mapper/crypted
```
The LUKS volume should be automatically picked up by
`nixos-generate-config`, but you might want to verify that your
`hardware-configuration.nix` looks correct. To manually ensure that the
system is automatically mounted at boot time as `/`, add the following
to `configuration.nix`:
```nix
boot.initrd.luks.devices.crypted.device = "/dev/disk/by-uuid/3f6b0024-3a44-4fde-a43a-767b872abe5d";
fileSystems."/".device = "/dev/mapper/crypted";
```
Should grub be used as bootloader, and `/boot` is located on an
encrypted partition, it is necessary to add the following grub option:
```nix
boot.loader.grub.enableCryptodisk = true;
```
## FIDO2 {#sec-luks-file-systems-fido2}
NixOS also supports unlocking your LUKS-Encrypted file system using a FIDO2
compatible token.
### Without systemd in initrd {#sec-luks-file-systems-fido2-legacy}
In the following example, we will create a new
FIDO2 credential and add it as a new key to our existing device
`/dev/sda2`:
```ShellSession
# export FIDO2_LABEL="/dev/sda2 @ $HOSTNAME"
# fido2luks credential "$FIDO2_LABEL"
f1d00200108b9d6e849a8b388da457688e3dd653b4e53770012d8f28e5d3b269865038c346802f36f3da7278b13ad6a3bb6a1452e24ebeeaa24ba40eef559b1b287d2a2f80b7
# fido2luks -i add-key /dev/sda2 f1d00200108b9d6e849a8b388da457688e3dd653b4e53770012d8f28e5d3b269865038c346802f36f3da7278b13ad6a3bb6a1452e24ebeeaa24ba40eef559b1b287d2a2f80b7
Password:
Password (again):
Old password:
Old password (again):
Added to key to device /dev/sda2, slot: 2
```
To ensure that this file system is decrypted using the FIDO2 compatible
key, add the following to `configuration.nix`:
```nix
boot.initrd.luks.fido2Support = true;
boot.initrd.luks.devices."/dev/sda2".fido2.credential = "f1d00200108b9d6e849a8b388da457688e3dd653b4e53770012d8f28e5d3b269865038c346802f36f3da7278b13ad6a3bb6a1452e24ebeeaa24ba40eef559b1b287d2a2f80b7";
```
You can also use the FIDO2 passwordless setup, but for security reasons,
you might want to enable it only when your device is PIN protected, such
as [Trezor](https://trezor.io/).
```nix
boot.initrd.luks.devices."/dev/sda2".fido2.passwordLess = true;
```
### systemd Stage 1 {#sec-luks-file-systems-fido2-systemd}
If systemd stage 1 is enabled, it handles unlocking of LUKS-enrypted volumes
during boot. The following example enables systemd stage1 and adds support for
unlocking the existing LUKS2 volume `root` using any enrolled FIDO2 compatible
tokens.
```nix
boot.initrd = {
luks.devices.root = {
crypttabExtraOpts = [ "fido2-device=auto" ];
device = "/dev/sda2";
};
systemd.enable = true;
};
```
All tokens that should be used for unlocking the LUKS2-encrypted volume must
first be enrolled using [systemd-cryptenroll](https://www.freedesktop.org/software/systemd/man/systemd-cryptenroll.html).
In the following example, a new key slot for the first discovered token is
added to the LUKS volume.
```ShellSession
# systemd-cryptenroll --fido2-device=auto /dev/sda2
```
Existing key slots are left intact, unless `--wipe-slot=` is specified. It is
recommened to add a recovery key that should be stored in a secure physical
location and can be entered wherever a password would be entered.
```ShellSession
# systemd-cryptenroll --recovery-key /dev/sda2
```