nixpkgs/pkgs/stdenv/darwin/default.nix

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1451 lines
55 KiB
Nix
Raw Normal View History

darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# This file contains the standard build environment for Darwin. It is based on LLVM and is patterned
# after the Linux stdenv. It shares similar goals to the Linux standard environment in that the
# resulting environment should be built purely and not contain any references to it.
#
# For more on the design of the stdenv and updating it, see `README.md`.
#
# See also the top comments of the Linux stdenv `../linux/default.nix` for a good overview of
# the bootstrap process and working with it.
{ lib
2021-06-02 05:25:56 +01:00
, localSystem
, crossSystem
, config
, overlays
, crossOverlays ? [ ]
# Allow passing in bootstrap files directly so we can test the stdenv bootstrap process when changing the bootstrap tools
, bootstrapFiles ? if localSystem.isAarch64 then
import ./bootstrap-files/aarch64-apple-darwin.nix
2020-11-19 08:28:20 +00:00
else
import ./bootstrap-files/x86_64-apple-darwin.nix
}:
assert crossSystem == localSystem;
let
inherit (localSystem) system;
useAppleSDKLibs = lib.versionAtLeast localSystem.darwinSdkVersion "11";
2020-11-19 08:28:20 +00:00
commonImpureHostDeps = [
"/bin/sh"
"/usr/lib/libSystem.B.dylib"
"/usr/lib/system/libunc.dylib" # This dependency is "hidden", so our scanning code doesn't pick it up
];
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
isFromNixpkgs = pkg: !(isFromBootstrapFiles pkg);
isFromBootstrapFiles =
pkg: pkg.passthru.isFromBootstrapFiles or false;
isBuiltByNixpkgsCompiler =
pkg: isFromNixpkgs pkg && isFromNixpkgs pkg.stdenv.cc.cc;
isBuiltByBootstrapFilesCompiler =
pkg: isFromNixpkgs pkg && isFromBootstrapFiles pkg.stdenv.cc.cc;
commonPreHook = ''
export NIX_ENFORCE_NO_NATIVE=''${NIX_ENFORCE_NO_NATIVE-1}
export NIX_ENFORCE_PURITY=''${NIX_ENFORCE_PURITY-1}
export NIX_IGNORE_LD_THROUGH_GCC=1
unset SDKROOT
'';
bootstrapTools = derivation ({
inherit system;
2021-06-02 05:25:56 +01:00
name = "bootstrap-tools";
builder = "${bootstrapFiles.unpack}/bin/bash";
args = [
"${bootstrapFiles.unpack}/bootstrap-tools-unpack.sh"
bootstrapFiles.bootstrapTools
];
PATH = lib.makeBinPath [
(placeholder "out")
bootstrapFiles.unpack
];
__impureHostDeps = commonImpureHostDeps;
} // lib.optionalAttrs config.contentAddressedByDefault {
__contentAddressed = true;
outputHashAlgo = "sha256";
outputHashMode = "recursive";
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
}) // { passthru.isFromBootstrapFiles = true; };
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
stageFun = prevStage:
{ name, overrides ? (self: super: { }), extraNativeBuildInputs ? [ ], extraPreHook ? "" }:
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
let
cc = if prevStage.llvmPackages.clang-unwrapped == null
then null else
lib.makeOverridable (import ../../build-support/cc-wrapper) {
name = "${name}-clang-wrapper";
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
nativeTools = false;
nativeLibc = false;
expand-response-params = lib.optionalString
(prevStage.stdenv.hasCC or false && prevStage.stdenv.cc != "/dev/null")
prevStage.expand-response-params;
2021-06-02 05:25:56 +01:00
extraPackages = [
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
prevStage.llvmPackages.compiler-rt
];
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraBuildCommands =
let
inherit (prevStage.llvmPackages) clang-unwrapped compiler-rt release_version;
in
''
function clangResourceRootIncludePath() {
clangLib="$1/lib/clang"
if (( $(ls "$clangLib" | wc -l) > 1 )); then
echo "Multiple LLVM versions were found at "$clangLib", but there must only be one used when building the stdenv." >&2
exit 1
fi
echo "$clangLib/$(ls -1 "$clangLib")/include"
}
rsrc="$out/resource-root"
mkdir "$rsrc"
ln -s "$(clangResourceRootIncludePath "${clang-unwrapped.lib}")" "$rsrc"
ln -s "${compiler-rt.out}/lib" "$rsrc/lib"
ln -s "${compiler-rt.out}/share" "$rsrc/share"
echo "-resource-dir=$rsrc" >> $out/nix-support/cc-cflags
'';
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
cc = prevStage.llvmPackages.clang-unwrapped;
bintools = prevStage.darwin.binutils;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
isClang = true;
libc = prevStage.darwin.Libsystem;
inherit (prevStage.llvmPackages) libcxx;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit lib;
inherit (prevStage) coreutils gnugrep;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
stdenvNoCC = prevStage.ccWrapperStdenv;
runtimeShell = prevStage.ccWrapperStdenv.shell;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
};
bash = prevStage.bash or bootstrapTools;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
thisStdenv = import ../generic {
name = "${name}-stdenv-darwin";
buildPlatform = localSystem;
hostPlatform = localSystem;
targetPlatform = localSystem;
inherit config;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraBuildInputs = [ prevStage.darwin.CF ];
extraNativeBuildInputs = extraNativeBuildInputs
++ [ prevStage.darwin.apple_sdk.sdkRoot ];
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
preHook = lib.optionalString (!isBuiltByNixpkgsCompiler bash) ''
# Don't patch #!/interpreter because it leads to retained
# dependencies on the bootstrapTools in the final stdenv.
dontPatchShebangs=1
'' + ''
${commonPreHook}
${extraPreHook}
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
'' + lib.optionalString (prevStage.darwin ? locale) ''
export PATH_LOCALE=${prevStage.darwin.locale}/share/locale
'';
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
shell = bash + "/bin/bash";
initialPath = [ bash bootstrapTools ];
fetchurlBoot = import ../../build-support/fetchurl {
inherit lib;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
stdenvNoCC = prevStage.ccWrapperStdenv or thisStdenv;
curl = bootstrapTools;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit cc;
# The stdenvs themselves don't use mkDerivation, so I need to specify this here
__stdenvImpureHostDeps = commonImpureHostDeps;
__extraImpureHostDeps = commonImpureHostDeps;
# Using the bootstrap tools curl for fetchers allows the stdenv bootstrap to avoid
# having a dependency on curl, allowing curl to be updated without triggering a
# new stdenv bootstrap on Darwin.
2021-06-02 05:25:56 +01:00
overrides = self: super: (overrides self super) // {
fetchurl = thisStdenv.fetchurlBoot;
fetchpatch = super.fetchpatch.override { inherit (self) fetchurl; };
fetchzip = super.fetchzip.override { inherit (self) fetchurl; };
};
};
2021-06-02 05:25:56 +01:00
in
{
inherit config overlays;
stdenv = thisStdenv;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
in
assert bootstrapTools.passthru.isFromBootstrapFiles or false; # sanity check
[
({}: {
__raw = true;
coreutils = null;
gnugrep = null;
pbzx = null;
cpio = null;
darwin = {
apple_sdk.sdkRoot = null;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
binutils = null;
binutils-unwrapped = null;
cctools = null;
print-reexports = null;
rewrite-tbd = null;
sigtool = null;
CF = null;
Libsystem = null;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
llvmPackages = {
clang-unwrapped = null;
libllvm = null;
libcxx = null;
compiler-rt = null;
};
})
# Create a stage with the bootstrap tools. This will be used to build the subsequent stages and
# build up the standard environment.
#
# Note: Each stage depends only on the the packages in `prevStage`. If a package is not to be
# rebuilt, it should be passed through by inheriting it.
(prevStage: stageFun prevStage {
name = "bootstrap-stage0";
overrides = self: super: {
# We thread stage0's stdenv through under this name so downstream stages
# can use it for wrapping gcc too. This way, downstream stages don't need
# to refer to this stage directly, which violates the principle that each
# stage should only access the stage that came before it.
ccWrapperStdenv = self.stdenv;
bash = bootstrapTools // {
shellPath = "/bin/bash";
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
coreutils = bootstrapTools;
cpio = bootstrapTools;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
gnugrep = bootstrapTools;
pbzx = bootstrapTools;
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
# Prevent CF from being propagated to the initial stdenv. Packages that require it
# will have to manually add it to their build inputs.
CF = null;
binutils = super.wrapBintoolsWith {
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
name = "bootstrap-stage0-binutils-wrapper";
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
nativeTools = false;
nativeLibc = false;
2020-11-19 08:28:20 +00:00
expand-response-params = "";
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
libc = selfDarwin.Libsystem;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit lib;
inherit (self) stdenvNoCC coreutils gnugrep;
runtimeShell = self.stdenvNoCC.shell;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
bintools = selfDarwin.binutils-unwrapped;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit (selfDarwin) postLinkSignHook signingUtils;
};
2020-11-19 08:28:20 +00:00
binutils-unwrapped = (superDarwin.binutils-unwrapped.overrideAttrs (old: {
version = "boot";
passthru = (old.passthru or { }) // {
isFromBootstrapFiles = true;
};
})).override { enableManpages = false; };
cctools = super.stdenv.mkDerivation {
pname = "bootstrap-stage0-cctools";
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
version = "boot";
buildCommand = ''
declare -a cctools=(
ar
bitcode_strip
check_dylib
checksyms
cmpdylib
codesign_allocate
ctf_insert
depinfo
diagtest
ld
gas
gprof
install_name_tool
libtool
lipo
mtoc
mtor
nm
nmedit
otool
pagestuff
ranlib
redo_prebinding
seg_addr_table
seg_hack
segedit
size
strings
strip
vtool
)
mkdir -p "$out/bin"
for tool in "''${cctools[@]}"; do
toolsrc="${bootstrapTools}/bin/$tool"
if [ -e "$toolsrc" ]; then
ln -s "$toolsrc" "$out/bin"
fi
done
# Copy only the required headers to avoid accidentally linking headers that belong to other packages,
# which can cause problems when building Libsystem in the source-based SDK.
declare -a machohdrs=(
arch.h
fat.h
fixup-chains.h
getsect.h
ldsyms.h
loader.h
nlist.h
ranlib.h
reloc.h
stab.h
swap.h
arm
arm64
hppa
i386
i860
m68k
m88k
ppc
sparc
x86_64
)
mkdir -p "$out/include/mach-o"
for header in "''${machohdrs[@]}"; do
machosrc="${bootstrapTools}/include-Libsystem/mach-o/$header"
if [ -e "$machosrc" ]; then
cp -r "$machosrc" "$out/include/mach-o/$header"
fi
done
'';
passthru = {
isFromBootstrapFiles = true;
targetPrefix = "";
};
2020-11-19 08:28:20 +00:00
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
locale = self.stdenv.mkDerivation {
name = "bootstrap-stage0-locale";
buildCommand = ''
mkdir -p $out/share/locale
'';
};
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
print-reexports = bootstrapTools;
rewrite-tbd = bootstrapTools;
sigtool = bootstrapTools;
2020-11-19 08:28:20 +00:00
} // lib.optionalAttrs (! useAppleSDKLibs) {
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
Libsystem = self.stdenv.mkDerivation {
name = "bootstrap-stage0-Libsystem";
buildCommand = ''
mkdir -p $out
cp -r ${selfDarwin.darwin-stubs}/usr/lib $out/lib
chmod -R +w $out/lib
substituteInPlace $out/lib/libSystem.B.tbd --replace /usr/lib/system $out/lib/system
ln -s libSystem.B.tbd $out/lib/libSystem.tbd
for name in c dbm dl info m mx poll proc pthread rpcsvc util gcc_s.10.4 gcc_s.10.5; do
ln -s libSystem.tbd $out/lib/lib$name.tbd
done
ln -s ${bootstrapTools}/lib/*.o $out/lib
ln -s ${bootstrapTools}/lib/libresolv.9.dylib $out/lib
ln -s libresolv.9.dylib $out/lib/libresolv.dylib
ln -s ${bootstrapTools}/include-Libsystem $out/include
'';
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
passthru.isFromBootstrapFiles = true;
};
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (selfTools: _: {
libclang = self.stdenv.mkDerivation {
name = "bootstrap-stage0-clang";
version = "boot";
outputs = [ "out" "lib" ];
buildCommand = ''
mkdir -p $out/lib
ln -s $out $lib
ln -s ${bootstrapTools}/bin $out/bin
ln -s ${bootstrapTools}/lib/clang $out/lib
ln -s ${bootstrapTools}/include $out
'';
passthru = {
isFromBootstrapFiles = true;
hardeningUnsupportedFlags = [
"fortify3"
"stackclashprotection"
"zerocallusedregs"
];
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
};
libllvm = self.stdenv.mkDerivation {
name = "bootstrap-stage0-llvm";
outputs = [ "out" "lib" ];
buildCommand = ''
mkdir -p $out/bin $out/lib
ln -s $out $lib
for tool in ${toString super.darwin.binutils-unwrapped.llvm_cmds}; do
cctoolsTool=''${tool//-/_}
toolsrc="${bootstrapTools}/bin/$cctoolsTool"
if [ -e "$toolsrc" ]; then
ln -s "$toolsrc" $out/bin/llvm-$tool
fi
done
ln -s ${bootstrapTools}/bin/dsymutil $out/bin/dsymutil
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
ln -s ${bootstrapTools}/lib/libLLVM* $out/lib
'';
passthru.isFromBootstrapFiles = true;
};
});
libraries = super.llvmPackages.libraries.extend (_: _: {
libcxx = self.stdenv.mkDerivation {
name = "bootstrap-stage0-libcxx";
buildCommand = ''
mkdir -p $out/lib $out/include
ln -s ${bootstrapTools}/lib/libc++.dylib $out/lib
ln -s ${bootstrapTools}/include/c++ $out/include
'';
passthru = {
isLLVM = true;
isFromBootstrapFiles = true;
};
};
compiler-rt = self.stdenv.mkDerivation {
name = "bootstrap-stage0-compiler-rt";
buildCommand = ''
mkdir -p $out/lib $out/share
ln -s ${bootstrapTools}/lib/libclang_rt* $out/lib
ln -s ${bootstrapTools}/lib/darwin $out/lib
'';
passthru.isFromBootstrapFiles = true;
};
});
in
{ inherit tools libraries; } // tools // libraries
);
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
'';
})
# This stage is primarily responsible for setting up versions of certain dependencies needed
# by the rest of the build process. This stage also builds CF and Libsystem to simplify assertions
# and assumptions for later by making sure both packages are present on x86_64-darwin and aarch64-darwin.
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
(prevStage:
# previous stage0 stdenv:
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
assert lib.all isFromBootstrapFiles (
with prevStage; [ bash coreutils cpio gnugrep ] ++ lib.optionals useAppleSDKLibs [ pbzx ]
);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isFromBootstrapFiles (with prevStage.darwin; [
binutils-unwrapped cctools print-reexports rewrite-tbd sigtool
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
assert (! useAppleSDKLibs) -> lib.all isFromBootstrapFiles (with prevStage.darwin; [ Libsystem ]);
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ Libsystem ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isFromNixpkgs (with prevStage.darwin; [ dyld launchd xnu ]);
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
assert (with prevStage.darwin; (! useAppleSDKLibs) -> CF == null);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isFromBootstrapFiles (with prevStage.llvmPackages; [
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
clang-unwrapped libclang libllvm llvm compiler-rt libcxx
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
stageFun prevStage {
name = "bootstrap-stage1";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
coreutils gnugrep;
binutils-unwrapped = builtins.throw "nothing in the Darwin bootstrap should depend on GNU binutils";
curl = builtins.throw "nothing in the Darwin bootstrap can depend on curl";
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
# Use this stages CF to build CMake. Its required but cant be included in the stdenv.
cmake = self.cmakeMinimal;
cmakeMinimal = super.cmakeMinimal.overrideAttrs (old: {
buildInputs = old.buildInputs ++ [ self.darwin.CF ];
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Disable tests because they use dejagnu, which fails to run.
libffi = super.libffi.override { doCheck = false; };
# Use libconvReal to break an infinite recursion. It will be dropped in the next stage.
libiconv = super.libiconvReal;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Avoid pulling in a full python and its extra dependencies for the llvm/clang builds.
libxml2 = super.libxml2.override { pythonSupport = false; };
ninja = super.ninja.override { buildDocs = false; };
# Use this stages CF to build Python. Its required, but it cant be included in the stdenv.
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
python3 = self.python3Minimal;
python3Minimal = (super.python3Minimal.override {
self = self.python3Minimal;
}).overrideAttrs (old: {
buildInputs = old.buildInputs or [ ] ++ [ self.darwin.CF ];
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
inherit (prevStage.darwin) cctools;
apple_sdk = superDarwin.apple_sdk // {
inherit (prevStage.darwin.apple_sdk) sdkRoot;
};
# Use this stages CF to build configd. Its required, but it cant be included in the stdenv.
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
configd = superDarwin.configd.overrideAttrs (old: {
buildInputs = old.buildInputs or [ ] ++ [ self.darwin.CF ];
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
signingUtils = prevStage.darwin.signingUtils.override {
inherit (selfDarwin) sigtool;
};
2023-07-08 10:44:20 +01:00
postLinkSignHook = prevStage.darwin.postLinkSignHook.override {
inherit (selfDarwin) sigtool;
};
# Rewrap binutils with the real Libsystem
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
binutils = superDarwin.binutils.override {
inherit (self) coreutils;
inherit (selfDarwin) postLinkSignHook signingUtils;
bintools = selfDarwin.binutils-unwrapped;
libc = selfDarwin.Libsystem;
# TODO(@sternenseemann): can this be removed?
runtimeShell = "${bootstrapTools}/bin/bash";
};
# Avoid building unnecessary Python dependencies due to building LLVM manpages.
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
binutils-unwrapped = superDarwin.binutils-unwrapped.override {
inherit (selfDarwin) cctools;
enableManpages = false;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
inherit (prevStage.llvmPackages) clang-unwrapped libclang libllvm llvm;
});
libraries = super.llvmPackages.libraries.extend (_: _: {
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
inherit (prevStage.llvmPackages) compiler-rt libcxx;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
in
{ inherit tools libraries; inherit (prevStage.llvmPackages) release_version; } // tools // libraries
);
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
'';
})
# Build sysctl for use by LLVMs check phase. It must be built separately to avoid an infinite recursion.
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
(prevStage:
# previous stage1 stdenv:
assert lib.all isFromBootstrapFiles (with prevStage; [ coreutils gnugrep ]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
autoconf automake bash bison brotli cmake cpio cyrus_sasl db
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
ed expat flex gettext gmp groff icu libedit libffi libiconv libidn2 libkrb5 libssh2
libtool libunistring libxml2 m4 ncurses nghttp2 ninja openldap openssh openssl
patchutils pbzx perl pkg-config.pkg-config python3 python3Minimal scons serf sqlite
subversion texinfo unzip which xz zlib zstd
]);
assert lib.all isFromBootstrapFiles (with prevStage.darwin; [ cctools ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
locale libtapi print-reexports rewrite-tbd sigtool
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ Libsystem configd ]);
assert (! useAppleSDKLibs) -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ binutils-unwrapped dyld launchd xnu ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isFromBootstrapFiles (with prevStage.llvmPackages; [
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
clang-unwrapped libclang libllvm llvm compiler-rt libcxx
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.getVersion prevStage.stdenv.cc.bintools.bintools == "boot";
stageFun prevStage {
name = "bootstrap-stage1-sysctl";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
autoconf automake bash binutils-unwrapped bison brotli cmake cmakeMinimal
coreutils cpio curl cyrus_sasl db ed expat flex gettext gmp gnugrep groff icu
libedit libffi libidn2 libkrb5 libssh2 libtool libunistring libxml2 m4
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
ncurses nghttp2 ninja openldap openssh openssl patchutils pbzx perl pkg-config
python3Minimal scons sed serf sharutils sqlite subversion texinfo unzip which xz
zlib zstd;
# Avoid pulling in openldap just to run Mesons tests.
meson = super.meson.overrideAttrs {
doInstallCheck = false;
};
# The bootstrap Python needs its own `pythonAttr` to make sure the override works properly.
python3 = self.python3-bootstrap;
python3-bootstrap = super.python3.override {
self = self.python3-bootstrap;
pythonAttr = "python3-bootstrap";
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
enableLTO = false;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin = super.darwin.overrideScope (_: superDarwin: {
inherit (prevStage.darwin)
CF sdkRoot Libsystem binutils binutils-unwrapped cctools cctools-port configd darwin-stubs dyld
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
launchd libclosure libdispatch libobjc locale objc4 postLinkSignHook
print-reexports rewrite-tbd signingUtils sigtool;
apple_sdk = superDarwin.apple_sdk // {
inherit (prevStage.darwin.apple_sdk) sdkRoot;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
inherit (prevStage.llvmPackages) clang-unwrapped libclang libllvm llvm;
clang = prevStage.stdenv.cc;
});
libraries = super.llvmPackages.libraries.extend (_: _: {
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
inherit (prevStage.llvmPackages) compiler-rt libcxx;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
in
{ inherit tools libraries; inherit (prevStage.llvmPackages) release_version; } // tools // libraries
);
};
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
'';
})
# First rebuild of LLVM. While this LLVM is linked to a bunch of junk from the bootstrap tools,
# the libc++ and libc++abi it produces are not. The compiler will be rebuilt in a later stage,
# but those libraries will be used in the final stdenv.
#
# Rebuild coreutils and gnugrep to avoid unwanted references to the bootstrap tools on `PATH`.
(prevStage:
# previous stage-sysctl stdenv:
assert lib.all isFromBootstrapFiles (with prevStage; [ coreutils gnugrep ]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
atf autoconf automake bash bison brotli cmake cpio cyrus_sasl db
ed expat flex gettext gmp groff icu kyua libedit libffi libiconv libidn2 libkrb5 libssh2
libtool libunistring libxml2 m4 meson ncurses nghttp2 ninja openldap openssh openssl
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
patchutils pbzx perl pkg-config.pkg-config python3 python3Minimal scons serf sqlite
subversion sysctl.provider texinfo unzip which xz zlib zstd
]);
assert lib.all isFromBootstrapFiles (with prevStage.darwin; [ cctools ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
locale libtapi print-reexports rewrite-tbd sigtool
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ Libsystem configd ]);
assert (! useAppleSDKLibs) -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ binutils-unwrapped dyld launchd xnu ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isFromBootstrapFiles (with prevStage.llvmPackages; [
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
clang-unwrapped libclang libllvm llvm compiler-rt libcxx
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
stageFun prevStage {
name = "bootstrap-stage-xclang";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
atf autoconf automake bash binutils-unwrapped bison brotli cmake cmakeMinimal
cpio curl cyrus_sasl db ed expat flex gettext gmp groff icu kyua libedit libffi libiconv
libidn2 libkrb5 libssh2 libtool libunistring libxml2 m4 meson ncurses nghttp2 ninja
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
openldap openssh openssl patchutils pbzx perl pkg-config python3 python3Minimal
scons sed serf sharutils sqlite subversion sysctl texinfo unzip which xz zlib zstd;
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit (prevStage.darwin)
CF Libsystem configd darwin-stubs dyld launchd libclosure libdispatch libobjc
locale objc4 postLinkSignHook print-reexports rewrite-tbd signingUtils sigtool;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
apple_sdk = superDarwin.apple_sdk // {
inherit (prevStage.darwin.apple_sdk) sdkRoot;
};
binutils = superDarwin.binutils.override {
inherit (prevStage) expand-response-params;
libc = selfDarwin.Libsystem;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Avoid building unnecessary Python dependencies due to building LLVM manpages.
binutils-unwrapped = superDarwin.binutils-unwrapped.override { enableManpages = false; };
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
llvmPackages = super.llvmPackages // (
let
llvmMajor = lib.versions.major super.llvmPackages.release_version;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# libc++, and libc++abi do not need CoreFoundation. Avoid propagating the CF from prior
# stages to the final stdenv via rpath by dropping it from `extraBuildInputs`.
stdenvNoCF = self.stdenv.override {
extraBuildInputs = [ ];
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
libcxxBootstrapStdenv = self.overrideCC stdenvNoCF (self.llvmPackages.clangNoCompilerRtWithLibc.override {
nixSupport.cc-cflags = [ "-nostdlib" ];
nixSupport.cc-ldflags = [ "-lSystem" ];
});
tools = super.llvmPackages.tools.extend (selfTools: superTools: {
# LLVMs check phase takes a while to run, so disable it in the first LLVM build to speed up the bootstrap.
libllvm = superTools.libllvm.override { doCheck = false; };
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
libraries = super.llvmPackages.libraries.extend (selfLib: superLib: {
compiler-rt = null;
libcxx = superLib.libcxx.override ({
stdenv = libcxxBootstrapStdenv;
2021-06-02 05:25:56 +01:00
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
in
{ inherit tools libraries; } // tools // libraries
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
);
};
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
'';
})
# This stage rebuilds Libsystem. It also rebuilds bash, which will be needed in later stages
# to use in patched shebangs (e.g., to make sure `icu-config` uses bash from nixpkgs).
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
(prevStage:
# previous stage-xclang stdenv:
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
atf autoconf automake bash bison cmake cmakeMinimal coreutils cpio
cyrus_sasl db ed expat flex gettext gmp gnugrep groff icu kyua libedit libtool m4 meson ninja
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
openbsm openldap openpam openssh patchutils pbzx perl pkg-config.pkg-config python3
python3Minimal scons serf sqlite subversion sysctl.provider texinfo unzip which xz
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
brotli libffi libiconv libidn2 libkrb5 libssh2 libunistring libxml2 ncurses
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
nghttp2 openssl zlib zstd
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
cctools locale libtapi print-reexports rewrite-tbd sigtool
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ Libsystem configd ]);
assert (! useAppleSDKLibs) -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ binutils-unwrapped dyld launchd libclosure libdispatch xnu ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.llvmPackages; [
clang-unwrapped libclang libllvm llvm
]);
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.llvmPackages; [ libcxx ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert prevStage.llvmPackages.compiler-rt == null;
stageFun prevStage {
name = "bootstrap-stage2-Libsystem";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
atf autoconf automake binutils-unwrapped bison brotli cmake cmakeMinimal coreutils
cpio curl cyrus_sasl db ed expat flex gettext gmp gnugrep groff icu kyua libedit libffi
libiconv libidn2 libkrb5 libssh2 libtool libunistring libxml2 m4 meson ncurses nghttp2
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
ninja openbsm openldap openpam openssh openssl patchutils pbzx perl pkg-config
python3 python3Minimal scons serf sqlite subversion sysctl texinfo unzip which xz
zlib zstd;
2020-11-19 08:28:20 +00:00
# Bash must be linked against the system CoreFoundation instead of the open-source one.
# Otherwise, there will be a dependency cycle: bash -> CF -> icu -> bash (for icu^dev).
bash = super.bash.overrideAttrs (super: {
buildInputs = super.buildInputs ++ [ self.darwin.apple_sdk.frameworks.CoreFoundation ];
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
inherit (prevStage.darwin)
CF binutils-unwrapped cctools configd darwin-stubs launchd libobjc libtapi locale
objc4 print-reexports rewrite-tbd signingUtils sigtool;
apple_sdk = superDarwin.apple_sdk // {
inherit (prevStage.darwin.apple_sdk) sdkRoot;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
inherit (prevStage.llvmPackages) clang-unwrapped clangNoCompilerRtWithLibc libclang libllvm llvm;
});
libraries = super.llvmPackages.libraries.extend (selfLib: superLib: {
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
inherit (prevStage.llvmPackages) compiler-rt libcxx;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
in
{ inherit tools libraries; inherit (prevStage.llvmPackages) release_version; } // tools // libraries
);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Dont link anything in this stage against CF to prevent propagating CF from prior stages to
# the final stdenv, which happens because of the rpath hook.
stdenv =
let
stdenvNoCF = super.stdenv.override {
extraBuildInputs = [ ];
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
in
self.overrideCC stdenvNoCF (self.llvmPackages.clangNoCompilerRtWithLibc.override {
inherit (self.llvmPackages) libcxx;
});
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
'';
})
# This stage rebuilds CF, compiler-rt, and the sdkRoot derivation.
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
#
# CF requires:
# - aarch64-darwin: libobjc (due to being apple_sdk.frameworks.CoreFoundation instead of swift-corefoundation)
# - x86_64-darwin: libiconv libxml2 icu zlib
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
(prevStage:
# previous stage2-Libsystem stdenv:
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
atf autoconf automake bison brotli cmake cmakeMinimal coreutils
cpio cyrus_sasl db ed expat flex gettext gmp gnugrep groff icu kyua libedit libidn2
libkrb5 libssh2 libtool libunistring m4 meson nghttp2 ninja openbsm openldap openpam openssh
openssl patchutils pbzx perl pkg-config.pkg-config python3 python3Minimal scons serf
sqlite subversion sysctl.provider texinfo unzip which xz zstd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage; [ bash ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
libffi libiconv libxml2 ncurses zlib zstd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
cctools locale libtapi print-reexports rewrite-tbd sigtool
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ configd ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert (! useAppleSDKLibs) -> lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [ Libsystem ]);
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
assert (! useAppleSDKLibs) -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ binutils-unwrapped dyld launchd libclosure libdispatch xnu ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.llvmPackages; [
clang-unwrapped libclang libllvm llvm
]);
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.llvmPackages; [ libcxx ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert prevStage.llvmPackages.compiler-rt == null;
stageFun prevStage {
name = "bootstrap-stage2-CF";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
atf autoconf automake bash bison brotli cmake cmakeMinimal coreutils cpio curl
cyrus_sasl db ed expat flex gettext gmp gnugrep groff kyua libedit libidn2 libkrb5
libssh2 libtool libunistring m4 meson ncurses nghttp2 ninja openbsm openldap openpam
openssh openssl patchutils pbzx perl pkg-config python3 python3Minimal scons serf
sqlite subversion sysctl texinfo unzip which xz zstd;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Avoid pulling in a full python and its extra dependencies for the llvm/clang builds.
libxml2 = super.libxml2.override { pythonSupport = false; };
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
inherit (prevStage.darwin)
Libsystem configd darwin-stubs launchd locale print-reexports rewrite-tbd
signingUtils sigtool;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Rewrap binutils so it uses the rebuilt Libsystem.
binutils = superDarwin.binutils.override {
inherit (prevStage) expand-response-params;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
libc = selfDarwin.Libsystem;
} // {
passthru = { inherit (prevStage.bintools.passthru) isFromBootstrapFiles; };
};
});
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
2024-03-31 16:32:02 +01:00
inherit (prevStage.llvmPackages) clang-unwrapped clangNoCompilerRtWithLibc libclang lld libllvm llvm;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
clang = prevStage.stdenv.cc;
});
libraries = super.llvmPackages.libraries.extend (selfLib: superLib: {
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
inherit (prevStage.llvmPackages) libcxx;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Make sure compiler-rt is linked against the CF from this stage, which can be
# propagated to the final stdenv. CF is required by ASAN.
compiler-rt = superLib.compiler-rt.override ({
inherit (self.llvmPackages) libllvm;
stdenv = self.stdenv.override {
extraBuildInputs = [ self.darwin.CF ];
2021-06-02 05:25:56 +01:00
};
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
in
{ inherit tools libraries; inherit (prevStage.llvmPackages) release_version; } // tools // libraries
);
2021-06-02 05:25:56 +01:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Dont link anything in this stage against CF to prevent propagating CF from prior stages to
# the final stdenv, which happens because of the rpath hook. Also dont use a stdenv with
# compiler-rt because it needs to be built in this stage.
stdenv =
let
stdenvNoCF = super.stdenv.override {
extraBuildInputs = [ ];
};
in
self.overrideCC stdenvNoCF (self.llvmPackages.clangNoCompilerRtWithLibc.override {
inherit (self.llvmPackages) libcxx;
# Make sure the stdenv is using the Libsystem that will be propagated to the final stdenv.
libc = self.darwin.Libsystem;
bintools = self.llvmPackages.clangNoCompilerRtWithLibc.bintools.override {
libc = self.darwin.Libsystem;
};
});
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
'';
})
# Rebuild LLVM with LLVM. This stage also rebuilds certain dependencies needed by LLVM.
#
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
# LLVM requires: libcxx libffi libiconv libxml2 ncurses zlib
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
(prevStage:
# previous stage2-CF stdenv:
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
autoconf automake bison brotli cmake cmakeMinimal coreutils cpio cyrus_sasl
db ed expat flex gettext gmp gnugrep groff libedit libidn2 libkrb5 libssh2 libtool
libunistring m4 meson ncurses nghttp2 ninja openbsm openldap openpam openssh openssl
patchutils pbzx perl pkg-config.pkg-config python3 python3Minimal scons serf sqlite
subversion sysctl.provider texinfo unzip which xz zstd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage; [
bash icu libffi libiconv libxml2 zlib
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
locale print-reexports rewrite-tbd sigtool
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [
cctools libtapi
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ configd ]);
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
assert (! useAppleSDKLibs) -> lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [ Libsystem ]);
assert (! useAppleSDKLibs) -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ binutils-unwrapped dyld launchd libclosure libdispatch xnu ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.llvmPackages; [
clang-unwrapped libclang libllvm llvm
]);
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.llvmPackages; [ libcxx ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
stageFun prevStage {
name = "bootstrap-stage3";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
autoconf automake bash binutils-unwrapped bison brotli cmake cmakeMinimal
coreutils cpio curl cyrus_sasl db ed expat flex gettext gmp gnugrep groff libedit
libidn2 libkrb5 libssh2 libtool libunistring m4 meson nghttp2 ninja openbsm openldap
openpam openssh openssl patchutils pbzx perl pkg-config python3 python3Minimal scons
sed serf sharutils sqlite subversion sysctl texinfo unzip which xz zstd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# CF dependencies - dont rebuild them.
2024-03-31 16:32:02 +01:00
icu libiconv libiconv-darwin libxml2 zlib;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Disable tests because they use dejagnu, which fails to run.
libffi = super.libffi.override { doCheck = false; };
2021-06-02 05:25:56 +01:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
inherit (prevStage.darwin)
CF Libsystem binutils binutils-unwrapped cctools cctools-port configd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin-stubs dyld launchd libclosure libdispatch libobjc libtapi locale objc4
postLinkSignHook print-reexports rewrite-tbd signingUtils sigtool;
apple_sdk = superDarwin.apple_sdk // {
inherit (prevStage.darwin.apple_sdk) sdkRoot;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
llvmPackages = super.llvmPackages // (
let
libraries = super.llvmPackages.libraries.extend (_: _: {
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
inherit (prevStage.llvmPackages) compiler-rt libcxx;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
in
{ inherit libraries; } // libraries
);
};
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
'';
})
# Construct a standard environment with the new clang. Also use the new compiler to rebuild
# everything that will be part of the final stdenv and isnt required by it, CF, or Libsystem.
(prevStage:
# previous stage3 stdenv:
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
autoconf automake bison brotli cmake cmakeMinimal coreutils cpio cyrus_sasl
db ed expat flex gettext gmp gnugrep groff libedit libidn2 libkrb5 libssh2 libtool
libunistring m4 meson nghttp2 ninja openbsm openldap openpam openssh openssl patchutils pbzx
perl pkg-config.pkg-config python3 python3Minimal scons serf sqlite subversion
sysctl.provider texinfo unzip which xz zstd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage; [
bash icu libffi libiconv libxml2 zlib
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
locale print-reexports rewrite-tbd sigtool
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [
cctools libtapi
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ configd ]);
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
assert (! useAppleSDKLibs) -> lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [ Libsystem ]);
assert (! useAppleSDKLibs) -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ binutils-unwrapped dyld launchd libclosure libdispatch xnu ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.llvmPackages; [
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
clang-unwrapped libclang libllvm llvm compiler-rt libcxx
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
stageFun prevStage {
name = "bootstrap-stage4";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
autoconf automake bash binutils-unwrapped bison cmake cmakeMinimal curl cyrus_sasl db expat flex groff
libedit libtool m4 meson ninja openldap openssh patchutils perl pkg-config python3 scons
serf sqlite subversion sysctl texinfo unzip which
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# CF dependencies - dont rebuild them.
icu
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# LLVM dependencies - dont rebuild them.
2024-03-31 16:32:02 +01:00
libffi libiconv libiconv-darwin libxml2 ncurses zlib;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
inherit (prevStage.darwin) dyld CF Libsystem darwin-stubs
# CF dependencies - dont rebuild them.
libobjc objc4;
2021-06-02 05:25:56 +01:00
apple_sdk = superDarwin.apple_sdk // {
inherit (prevStage.darwin.apple_sdk) sdkRoot;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
signingUtils = superDarwin.signingUtils.override {
inherit (selfDarwin) sigtool;
};
2021-06-02 05:25:56 +01:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
binutils = superDarwin.binutils.override {
inherit (prevStage) expand-response-params;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
bintools = selfDarwin.binutils-unwrapped;
libc = selfDarwin.Libsystem;
};
# binutils-unwrapped needs to build the LLVM man pages, which requires a lot of Python stuff
# that ultimately ends up depending on git. Fortunately, the git dependency is only for check
# inputs. The following set of overrides allow the LLVM documentation to be built without
# pulling curl (and other packages like ffmpeg) into the stdenv bootstrap.
binutils-unwrapped = superDarwin.binutils-unwrapped.override (old: {
llvm-manpages = super.llvmPackages.llvm-manpages.override {
python3Packages = self.python3.pkgs.overrideScope (_: superPython: {
hatch-vcs = superPython.hatch-vcs.overrideAttrs {
doInstallCheck = false;
};
markdown-it-py = superPython.markdown-it-py.overrideAttrs {
doInstallCheck = false;
};
mdit-py-plugins = superPython.mdit-py-plugins.overrideAttrs {
doInstallCheck = false;
};
myst-parser = superPython.myst-parser.overrideAttrs {
doInstallCheck = false;
};
});
};
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
inherit (prevStage.llvmPackages) clang-unwrapped libclang libllvm llvm;
libcxxClang = lib.makeOverridable (import ../../build-support/cc-wrapper) {
nativeTools = false;
nativeLibc = false;
inherit (prevStage) expand-response-params;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraPackages = [
self.llvmPackages.compiler-rt
];
extraBuildCommands =
let
inherit (self.llvmPackages) clang-unwrapped compiler-rt release_version;
# Clang 16+ uses only the major version in resource-root, but older versions use the complete one.
clangResourceRootIncludePath = clangLib: clangRelease:
let
clangVersion =
if lib.versionAtLeast clangRelease "16"
then lib.versions.major clangRelease
else clangRelease;
in
"${clangLib}/lib/clang/${clangVersion}/include";
in
''
rsrc="$out/resource-root"
mkdir "$rsrc"
ln -s "${clangResourceRootIncludePath clang-unwrapped.lib release_version}" "$rsrc"
ln -s "${compiler-rt.out}/lib" "$rsrc/lib"
ln -s "${compiler-rt.out}/share" "$rsrc/share"
echo "-resource-dir=$rsrc" >> $out/nix-support/cc-cflags
'';
cc = self.llvmPackages.clang-unwrapped;
bintools = self.darwin.binutils;
isClang = true;
libc = self.darwin.Libsystem;
inherit (self.llvmPackages) libcxx;
inherit lib;
inherit (self) stdenvNoCC coreutils gnugrep runtimeShell;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
};
});
libraries = super.llvmPackages.libraries.extend (_: _:{
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
inherit (prevStage.llvmPackages) compiler-rt libcxx;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
in
{ inherit tools libraries; } // tools // libraries
);
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
'';
})
# Construct the final stdenv. The version of LLVM provided should match the one defined in
# `all-packages.nix` for Darwin. Nothing should depend on the bootstrap tools or originate from
# the bootstrap tools.
#
# When updating the Darwin stdenv, make sure that the result has no dependency (`nix-store -qR`)
# on `bootstrapTools` or the binutils built in stage 1.
(prevStage:
# previous stage4 stdenv:
assert lib.all isBuiltByNixpkgsCompiler (with prevStage; [
bash brotli bzip2 cpio diffutils ed file findutils gawk
gettext gmp gnugrep gnumake gnused gnutar gzip icu libffi libiconv libidn2 libkrb5
libssh2 libunistring libxml2 libyaml ncurses nghttp2 openbsm openpam openssl patch
pbzx pcre python3Minimal xar xz zlib zstd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [
cctools libtapi locale print-reexports rewrite-tbd sigtool
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
darwin.stdenv: use CoreFoundation instead of CF This patch switches the CoreFoundation on x86_64-darwin from the open source swift-corelibs-foundation (CF) to the system CoreFoundation. This change was motivated by failures building packages for the current staging-next cycle #263535 due to an apparent incompatibility with the rpath-based approach to choosing CF or CoreFoundation and macOS 14. This error often manifests as a crash with an Illegal Instruction. For example, building aws-sdk-cpp for building Nix will fail this way. https://hydra.nixos.org/build/239459417/nixlog/1 Application Specific Information: CF objects must have a non-zero isa Error Formulating Crash Report: PC register does not match crashing frame (0x0 vs 0x7FF8094DD640) Thread 0 Crashed:: Dispatch queue: com.apple.main-thread 0 CoreFoundation 0x7ff8094dd640 CF_IS_OBJC.cold.1 + 14 1 CoreFoundation 0x7ff8094501d0 CF_IS_OBJC + 60 2 CoreFoundation 0x7ff8093155e8 CFRelease + 40 3 ??? 0x10c7a2c61 s_aws_secure_transport_ctx_destroy + 65 4 ??? 0x10c87ba32 aws_ref_count_release + 34 5 ??? 0x10c7b7adb aws_tls_connection_options_clean_up + 27 6 ??? 0x10c596db4 Aws::Crt::Io::TlsConnectionOptions::~TlsConnectionOptions() + 20 7 ??? 0x10c2d249c Aws::CleanupCrt() + 92 8 ??? 0x10c2d1ff0 Aws::ShutdownAPI(Aws::SDKOptions const&) + 64 9 ??? 0x102d9bc6f main + 335 10 dyld 0x202f333a6 start + 1942 According to a [post][1] on the Apple developer forums, hardening was added to CoreFoundation, and this particular message occurs when you attempt to release an object it does not recognize as a valid CF object. (Thank you to @lilyinstarlight for finding this post). When I switched aws-sdk-cpp to link against CoreFoundation instead of CF, the error went away. Somehow both libraries were being used. To prevent dependent packages from linking the wrong CoreFoundation, it would need to be added as a propagated build input. Note that there are other issues related to mixing CF and CoreFoundation frameworks. #264503 fixes an issue with abseil-cpp where it propagates CF, causing issues when using a different SDK version. Mixing versions can also cause crashes with Python when a shared object is loaded that is linked to the “wrong” CoreFoundation. `NIX_COREFOUNDATION_RPATH` is supposed to make sure the right CoreFoundation is being used, but it does not appear to be enough on macOS 14 (presumably due to the hardening). While it is possible to propagate CoreFoundation manually, the cleaner solution is to make it the default. CF remains available as `darwin.swift-corelibs-foundation`. [1]: https://developer.apple.com/forums/thread/739355
2023-11-02 00:56:50 +00:00
assert (! useAppleSDKLibs) -> lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [ Libsystem configd ]);
assert (! useAppleSDKLibs) -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ binutils-unwrapped dyld launchd libclosure libdispatch xnu ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.llvmPackages; [
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
clang-unwrapped libclang libllvm llvm compiler-rt libcxx
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
autoconf automake bison cmake cmakeMinimal cyrus_sasl db expat flex groff libedit
libtool m4 meson ninja openldap openssh patchutils perl pkg-config.pkg-config python3 scons
serf sqlite subversion sysctl.provider texinfo unzip which
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
2021-06-02 05:25:56 +01:00
let
doSign = localSystem.isAarch64;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
cc = prevStage.llvmPackages.clang;
2021-06-02 05:25:56 +01:00
in
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
{
inherit config overlays;
stdenv = import ../generic {
2021-06-02 05:25:56 +01:00
name = "stdenv-darwin";
2021-06-02 05:25:56 +01:00
buildPlatform = localSystem;
hostPlatform = localSystem;
targetPlatform = localSystem;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit config;
preHook = ''
${commonPreHook}
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
export PATH_LOCALE=${prevStage.darwin.locale}/share/locale
'';
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
initialPath = ((import ../generic/common-path.nix) { pkgs = prevStage; });
2021-06-02 05:25:56 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
prevStage.updateAutotoolsGnuConfigScriptsHook
] ++ [ prevStage.darwin.apple_sdk.sdkRoot ];
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraBuildInputs = [ prevStage.darwin.CF ];
inherit cc;
shell = cc.shell;
inherit (prevStage.stdenv) fetchurlBoot;
2021-06-02 05:25:56 +01:00
extraAttrs = {
inherit bootstrapTools;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
libc = prevStage.darwin.Libsystem;
shellPackage = prevStage.bash;
} // lib.optionalAttrs useAppleSDKLibs {
# This objc4 will be propagated to all builds using the final stdenv,
# and we shouldn't mix different builds, because they would be
# conflicting LLVM modules. Export it here so we can grab it later.
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit (prevStage.darwin) objc4;
2021-06-02 05:25:56 +01:00
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
disallowedRequisites = [ bootstrapTools.out ];
allowedRequisites = (with prevStage; [
bash
2021-06-02 05:25:56 +01:00
bzip2.bin
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
bzip2.out
cc.expand-response-params
2021-06-02 05:25:56 +01:00
coreutils
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin.binutils
darwin.binutils.bintools
2021-06-02 05:25:56 +01:00
diffutils
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
ed
file
findutils
2021-06-02 05:25:56 +01:00
gawk
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
gettext
gmp.out
2021-06-02 05:25:56 +01:00
gnugrep
gnugrep.pcre2.out
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
gnumake
gnused
gnutar
gzip
icu.out
libffi.out
libiconv
libunistring.out
2021-06-02 05:25:56 +01:00
libxml2.out
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
ncurses.dev
ncurses.man
ncurses.out
openbsm
openpam
patch
xz.bin
xz.out
zlib.dev
zlib.out
]
++ lib.optionals doSign [ openssl.out ])
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
++ lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
]
++ (with prevStage.llvmPackages; [
bintools-unwrapped
clang-unwrapped
clang-unwrapped.lib
compiler-rt
compiler-rt.dev
2021-06-02 05:25:56 +01:00
libcxx
libcxx.dev
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
lld
2021-06-02 05:25:56 +01:00
llvm
llvm.lib
])
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
++ (with prevStage.darwin; [
2021-06-02 05:25:56 +01:00
CF
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
Libsystem
cctools-port
dyld
2021-06-02 05:25:56 +01:00
libtapi
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
locale
apple_sdk.sdkRoot
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]
++ lib.optional useAppleSDKLibs [ objc4 ]
2021-06-02 05:25:56 +01:00
++ lib.optionals doSign [ postLinkSignHook sigtool signingUtils ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
__stdenvImpureHostDeps = commonImpureHostDeps;
__extraImpureHostDeps = commonImpureHostDeps;
overrides = self: super: {
inherit (prevStage)
bash brotli bzip2 coreutils cpio diffutils ed file findutils gawk
2024-03-31 16:32:02 +01:00
gettext gmp gnugrep gnumake gnused gnutar gzip icu libffi libiconv libiconv-darwin
libidn2 libssh2 libunistring libxml2 libyaml ncurses nghttp2 openbsm openpam
openssl patch pbzx pcre python3Minimal xar xz zlib zstd;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin = super.darwin.overrideScope (_: superDarwin: {
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit (prevStage.darwin)
CF ICU Libsystem darwin-stubs dyld locale libobjc libtapi rewrite-tbd xnu;
apple_sdk = superDarwin.apple_sdk // {
inherit (prevStage.darwin.apple_sdk) sdkRoot;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
} // lib.optionalAttrs (super.stdenv.targetPlatform == localSystem) {
inherit (prevStage.darwin) binutils binutils-unwrapped cctools-port;
2021-06-02 05:25:56 +01:00
});
} // lib.optionalAttrs (super.stdenv.targetPlatform == localSystem) {
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit (prevStage.llvmPackages) clang llvm;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Need to get rid of these when cross-compiling.
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
inherit (prevStage.llvmPackages) clang clang-unwrapped libclang libllvm llvm;
});
libraries = super.llvmPackages.libraries.extend (_: _: {
llvmPackages_{12,13,14,15,16,17,git}.{libcxx,libcxxabi}: merge libcxxabi into libcxx (#292043) - merge libcxxabi into libcxx for LLVM 12, 13, 14, 15, 16, 17, and git. - remove the link time workaround `-lc++ -lc++abi` from 58 packages as it is no longer required. - fixes https://github.com/NixOS/nixpkgs/issues/166205 - provides alternative fixes for. https://github.com/NixOS/nixpkgs/issues/269548 https://github.com/NixOS/nix/issues/9640 - pkgsCross.x86_64-freebsd builds work again This change can be represented in 3 stages 1. merge libcxxabi into libcxx -- files: pkgs/development/compilers/llvm/[12, git]/{libcxx, libcxxabi} 2. update stdenv to account for merge -- files: stdenv.{adapters, cc.wrapper, darwin} 3. remove all references to libcxxabi outside of llvm (about 58 packages modified) ### merging libcxxabi into libcxx - take the union of the libcxxabi and libcxx cmake flags - eliminate the libcxx-headers-only package - it was only needed to break libcxx <-> libcxxabi circular dependency - libcxx.cxxabi is removed. external cxxabi (freebsd) will symlink headers / libs into libcxx. - darwin will re-export the libcxxabi symbols into libcxx so linking `-lc++` is sufficient. - linux/freebsd `libc++.so` is a linker script `LINK(libc++.so.1, -lc++abi)` making `-lc++` sufficient. - libcxx/default.nix [12, 17] are identical except for patches and `LIBCXX_ADDITIONAL_LIBRARIES` (only used in 16+) - git/libcxx/defaul.nix does not link with -nostdlib when useLLVM is true so flag is removed. this is not much different than before as libcxxabi used -nostdlib where libcxx did not, so libc was linked in anyway. ### stdenv changes - darwin bootstrap, remove references to libcxxabi and cxxabi - cc-wrapper: remove c++ link workaround when libcxx.cxxabi doesn't exist (still exists for LLVM pre 12) - adapter: update overrideLibcxx to account for a pkgs.stdenv that only has libcxx ### 58 package updates - remove `NIX_LDFLAGS = "-l${stdenv.cc.libcxx.cxxabi.libName}` as no longer needed - swift, nodejs_v8 remove libcxxabi references in the clang override https://github.com/NixOS/nixpkgs/pull/292043
2024-03-11 10:53:37 +00:00
inherit (prevStage.llvmPackages) compiler-rt libcxx;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
in
{ inherit tools libraries; } // tools // libraries
);
};
};
})
# This "no-op" stage is just a place to put the assertions about stage6.
(prevStage:
# previous final stage stdenv:
assert isBuiltByNixpkgsCompiler prevStage.darwin.sigtool;
assert isBuiltByNixpkgsCompiler prevStage.darwin.print-reexports;
assert isBuiltByNixpkgsCompiler prevStage.darwin.rewrite-tbd;
assert isBuiltByNixpkgsCompiler prevStage.darwin.cctools;
assert isFromNixpkgs prevStage.darwin.CF;
assert isFromNixpkgs prevStage.darwin.Libsystem;
assert isFromNixpkgs prevStage.darwin.binutils-unwrapped;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
assert isBuiltByNixpkgsCompiler prevStage.llvmPackages.clang-unwrapped;
assert isBuiltByNixpkgsCompiler prevStage.llvmPackages.libllvm;
assert isBuiltByNixpkgsCompiler prevStage.llvmPackages.libcxx;
assert isBuiltByNixpkgsCompiler prevStage.llvmPackages.compiler-rt;
# Make sure these evaluate since they were disabled explicitly in the bootstrap.
assert isBuiltByNixpkgsCompiler prevStage.binutils-unwrapped;
assert isFromNixpkgs prevStage.binutils-unwrapped.src;
assert isBuiltByNixpkgsCompiler prevStage.curl;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
{ inherit (prevStage) config overlays stdenv; })
]