nixpkgs/pkgs/stdenv/darwin/default.nix

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1374 lines
53 KiB
Nix
Raw Normal View History

darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# This file contains the standard build environment for Darwin. It is based on LLVM and is patterned
# after the Linux stdenv. It shares similar goals to the Linux standard environment in that the
# resulting environment should be built purely and not contain any references to it.
#
# For more on the design of the stdenv and updating it, see `README.md`.
#
# See also the top comments of the Linux stdenv `../linux/default.nix` for a good overview of
# the bootstrap process and working with it.
{ lib
2021-06-02 05:25:56 +01:00
, localSystem
, crossSystem
, config
, overlays
, crossOverlays ? [ ]
# Allow passing in bootstrap files directly so we can test the stdenv bootstrap process when changing the bootstrap tools
, bootstrapFiles ? if localSystem.isAarch64 then
2020-11-19 08:28:20 +00:00
let
fetch = { file, sha256, executable ? true }: import <nix/fetchurl.nix> {
url = "http://tarballs.nixos.org/stdenv-darwin/aarch64/20acd4c4f14040485f40e55c0a76c186aa8ca4f3/${file}";
2020-11-19 08:28:20 +00:00
inherit (localSystem) system;
inherit sha256 executable;
2021-06-02 05:25:56 +01:00
}; in
{
sh = fetch { file = "sh"; sha256 = "17m3xrlbl99j3vm7rzz3ghb47094dyddrbvs2a6jalczvmx7spnj"; };
bzip2 = fetch { file = "bzip2"; sha256 = "1khs8s5klf76plhlvlc1ma838r8pc1qigk9f5bdycwgbn0nx240q"; };
mkdir = fetch { file = "mkdir"; sha256 = "1m9nk90paazl93v43myv2ay68c1arz39pqr7lk5ddbgb177hgg8a"; };
cpio = fetch { file = "cpio"; sha256 = "17pxq61yjjvyd738fy9f392hc9cfzkl612sdr9rxr3v0dgvm8y09"; };
tarball = fetch { file = "bootstrap-tools.cpio.bz2"; sha256 = "1v2332k33akm6mrm4bj749rxnnmc2pkbgcslmd0bbkf76bz2ildy"; executable = false; };
}
2020-11-19 08:28:20 +00:00
else
let
fetch = { file, sha256, executable ? true }: import <nix/fetchurl.nix> {
url = "http://tarballs.nixos.org/stdenv-darwin/x86_64/c253216595572930316f2be737dc288a1da22558/${file}";
2020-11-19 08:28:20 +00:00
inherit (localSystem) system;
inherit sha256 executable;
2021-06-02 05:25:56 +01:00
}; in
{
sh = fetch { file = "sh"; sha256 = "sha256-igMAVEfumFv/LUNTGfNi2nSehgTNIP4Sg+f3L7u6SMA="; };
bzip2 = fetch { file = "bzip2"; sha256 = "sha256-K3rhkJZipudT1Jgh+l41Y/fNsMkrPtiAsNRDha/lpZI="; };
mkdir = fetch { file = "mkdir"; sha256 = "sha256-VddFELwLDJGNADKB1fWwWPBtIAlEUgJv2hXRmC4NEeM="; };
cpio = fetch { file = "cpio"; sha256 = "sha256-SWkwvLaFyV44kLKL2nx720SvcL4ej/p2V/bX3uqAGO0="; };
tarball = fetch { file = "bootstrap-tools.cpio.bz2"; sha256 = "sha256-kRC/bhCmlD4L7KAvJQgcukk7AinkMz4IwmG1rqlh5tA="; executable = false; };
2021-06-02 05:25:56 +01:00
}
}:
assert crossSystem == localSystem;
let
inherit (localSystem) system;
2020-11-19 08:28:20 +00:00
useAppleSDKLibs = localSystem.isAarch64;
commonImpureHostDeps = [
"/bin/sh"
"/usr/lib/libSystem.B.dylib"
"/usr/lib/system/libunc.dylib" # This dependency is "hidden", so our scanning code doesn't pick it up
];
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
isFromNixpkgs = pkg: !(isFromBootstrapFiles pkg);
isFromBootstrapFiles =
pkg: pkg.passthru.isFromBootstrapFiles or false;
isBuiltByNixpkgsCompiler =
pkg: isFromNixpkgs pkg && isFromNixpkgs pkg.stdenv.cc.cc;
isBuiltByBootstrapFilesCompiler =
pkg: isFromNixpkgs pkg && isFromBootstrapFiles pkg.stdenv.cc.cc;
commonPreHook = pkgs: lib.optionalString (pkgs.darwin.system_cmds != null) ''
# Only use a response file on older systems with a small ARG_MAX (less than 1 MiB).
export NIX_CC_USE_RESPONSE_FILE=$(( "$("${lib.getBin pkgs.darwin.system_cmds}/bin/getconf" ARG_MAX)" < 1048576 ))
export NIX_LD_USE_RESPONSE_FILE=$NIX_CC_USE_RESPONSE_FILE
'' + ''
export NIX_ENFORCE_NO_NATIVE=''${NIX_ENFORCE_NO_NATIVE-1}
export NIX_ENFORCE_PURITY=''${NIX_ENFORCE_PURITY-1}
export NIX_IGNORE_LD_THROUGH_GCC=1
unset SDKROOT
'';
bootstrapTools = derivation ({
inherit system;
2021-06-02 05:25:56 +01:00
name = "bootstrap-tools";
builder = bootstrapFiles.sh; # Not a filename! Attribute 'sh' on bootstrapFiles
2021-06-02 05:25:56 +01:00
args = if localSystem.isAarch64 then [ ./unpack-bootstrap-tools-aarch64.sh ] else [ ./unpack-bootstrap-tools.sh ];
inherit (bootstrapFiles) mkdir bzip2 cpio tarball;
__impureHostDeps = commonImpureHostDeps;
} // lib.optionalAttrs config.contentAddressedByDefault {
__contentAddressed = true;
outputHashAlgo = "sha256";
outputHashMode = "recursive";
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
}) // { passthru.isFromBootstrapFiles = true; };
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
stageFun = prevStage:
{ name, overrides ? (self: super: { }), extraNativeBuildInputs ? [ ], extraPreHook ? "" }:
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
let
cc = if prevStage.llvmPackages.clang-unwrapped == null
then null else
lib.makeOverridable (import ../../build-support/cc-wrapper) {
name = "${name}-clang-wrapper";
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
nativeTools = false;
nativeLibc = false;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
buildPackages = lib.optionalAttrs (prevStage ? stdenv) {
inherit (prevStage) stdenv;
};
2021-06-02 05:25:56 +01:00
extraPackages = [
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
prevStage.llvmPackages.libcxxabi
prevStage.llvmPackages.compiler-rt
];
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraBuildCommands =
let
inherit (prevStage.llvmPackages) clang-unwrapped compiler-rt release_version;
in
''
function clangResourceRootIncludePath() {
clangLib="$1/lib/clang"
if (( $(ls "$clangLib" | wc -l) > 1 )); then
echo "Multiple LLVM versions were found at "$clangLib", but there must only be one used when building the stdenv." >&2
exit 1
fi
echo "$clangLib/$(ls -1 "$clangLib")/include"
}
rsrc="$out/resource-root"
mkdir "$rsrc"
ln -s "$(clangResourceRootIncludePath "${clang-unwrapped.lib}")" "$rsrc"
ln -s "${compiler-rt.out}/lib" "$rsrc/lib"
ln -s "${compiler-rt.out}/share" "$rsrc/share"
echo "-resource-dir=$rsrc" >> $out/nix-support/cc-cflags
'';
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
cc = prevStage.llvmPackages.clang-unwrapped;
bintools = prevStage.darwin.binutils;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
isClang = true;
libc = prevStage.darwin.Libsystem;
inherit (prevStage.llvmPackages) libcxx;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit lib;
inherit (prevStage) coreutils gnugrep;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
stdenvNoCC = prevStage.ccWrapperStdenv;
};
thisStdenv = import ../generic {
name = "${name}-stdenv-darwin";
buildPlatform = localSystem;
hostPlatform = localSystem;
targetPlatform = localSystem;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit config extraNativeBuildInputs;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraBuildInputs = [ prevStage.darwin.CF ];
preHook = ''
# Don't patch #!/interpreter because it leads to retained
# dependencies on the bootstrapTools in the final stdenv.
dontPatchShebangs=1
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
${commonPreHook prevStage}
${extraPreHook}
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
'' + lib.optionalString (prevStage.darwin ? locale) ''
export PATH_LOCALE=${prevStage.darwin.locale}/share/locale
'';
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
shell = "${bootstrapTools}/bin/bash";
2021-06-02 05:25:56 +01:00
initialPath = [ bootstrapTools ];
fetchurlBoot = import ../../build-support/fetchurl {
inherit lib;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
stdenvNoCC = prevStage.ccWrapperStdenv or thisStdenv;
curl = bootstrapTools;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit cc;
# The stdenvs themselves don't use mkDerivation, so I need to specify this here
__stdenvImpureHostDeps = commonImpureHostDeps;
__extraImpureHostDeps = commonImpureHostDeps;
2021-06-02 05:25:56 +01:00
overrides = self: super: (overrides self super) // {
fetchurl = thisStdenv.fetchurlBoot;
};
};
2021-06-02 05:25:56 +01:00
in
{
inherit config overlays;
stdenv = thisStdenv;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
in
assert bootstrapTools.passthru.isFromBootstrapFiles or false; # sanity check
[
({}: {
__raw = true;
coreutils = null;
gnugrep = null;
pbzx = null;
cpio = null;
darwin = {
binutils = null;
binutils-unwrapped = null;
cctools = null;
print-reexports = null;
rewrite-tbd = null;
sigtool = null;
system_cmds = null;
CF = null;
Libsystem = null;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
llvmPackages = {
clang-unwrapped = null;
libllvm = null;
libcxx = null;
libcxxabi = null;
compiler-rt = null;
};
})
# Create a stage with the bootstrap tools. This will be used to build the subsequent stages and
# build up the standard environment.
#
# Note: Each stage depends only on the the packages in `prevStage`. If a package is not to be
# rebuilt, it should be passed through by inheriting it.
(prevStage: stageFun prevStage {
name = "bootstrap-stage0";
overrides = self: super: {
# We thread stage0's stdenv through under this name so downstream stages
# can use it for wrapping gcc too. This way, downstream stages don't need
# to refer to this stage directly, which violates the principle that each
# stage should only access the stage that came before it.
ccWrapperStdenv = self.stdenv;
coreutils = bootstrapTools;
gnugrep = bootstrapTools;
pbzx = bootstrapTools;
cpio = self.stdenv.mkDerivation {
name = "bootstrap-stage0-cpio";
buildCommand = ''
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
mkdir -p $out/bin
ln -s ${bootstrapFiles.cpio} $out/bin/cpio
'';
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
passthru.isFromBootstrapFiles = true;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin = super.darwin.overrideScope (selfDarwin: _: {
binutils-unwrapped = bootstrapTools // {
version = "boot";
};
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
binutils = (import ../../build-support/bintools-wrapper) {
name = "bootstrap-stage0-binutils-wrapper";
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
nativeTools = false;
nativeLibc = false;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
buildPackages = { };
libc = selfDarwin.Libsystem;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit lib;
inherit (self) stdenvNoCC coreutils gnugrep;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
bintools = selfDarwin.binutils-unwrapped;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit (selfDarwin) postLinkSignHook signingUtils;
};
2020-11-19 08:28:20 +00:00
cctools = bootstrapTools // {
2020-11-19 08:28:20 +00:00
targetPrefix = "";
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
version = "boot";
man = bootstrapTools;
2020-11-19 08:28:20 +00:00
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
locale = self.stdenv.mkDerivation {
name = "bootstrap-stage0-locale";
buildCommand = ''
mkdir -p $out/share/locale
'';
};
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
print-reexports = bootstrapTools;
rewrite-tbd = bootstrapTools;
sigtool = bootstrapTools;
# The bootstrap only needs `getconf` from system_cmds, and it only needs to be able to
# query `ARG_MAX`. Using a small value here should be fine for the initial stage 1 build.
system_cmds = self.stdenv.mkDerivation {
name = "bootstrap-stage0-system_cmds";
buildCommand = ''
mkdir -p "$out/bin"
cat <<block > "$out/bin/getconf"
#!${bootstrapTools}/bin/bash
case "\$1" in
ARG_MAX)
echo "262144"
;;
*)
exit 1
esac
block
chmod a+x "$out/bin/getconf"
'';
passthru.isFromBootstrapFiles = true;
2020-11-19 08:28:20 +00:00
};
} // lib.optionalAttrs (! useAppleSDKLibs) {
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
CF = self.stdenv.mkDerivation {
2020-11-19 08:28:20 +00:00
name = "bootstrap-stage0-CF";
buildCommand = ''
mkdir -p $out/Library/Frameworks
ln -s ${bootstrapTools}/Library/Frameworks/CoreFoundation.framework $out/Library/Frameworks
'';
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
passthru.isFromBootstrapFiles = true;
2020-11-19 08:28:20 +00:00
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
Libsystem = self.stdenv.mkDerivation {
name = "bootstrap-stage0-Libsystem";
buildCommand = ''
mkdir -p $out
cp -r ${selfDarwin.darwin-stubs}/usr/lib $out/lib
chmod -R +w $out/lib
substituteInPlace $out/lib/libSystem.B.tbd --replace /usr/lib/system $out/lib/system
ln -s libSystem.B.tbd $out/lib/libSystem.tbd
for name in c dbm dl info m mx poll proc pthread rpcsvc util gcc_s.10.4 gcc_s.10.5; do
ln -s libSystem.tbd $out/lib/lib$name.tbd
done
ln -s ${bootstrapTools}/lib/*.o $out/lib
ln -s ${bootstrapTools}/lib/libresolv.9.dylib $out/lib
ln -s libresolv.9.dylib $out/lib/libresolv.dylib
ln -s ${bootstrapTools}/include-Libsystem $out/include
'';
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
passthru.isFromBootstrapFiles = true;
};
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (selfTools: _: {
libclang = self.stdenv.mkDerivation {
name = "bootstrap-stage0-clang";
version = "boot";
outputs = [ "out" "lib" ];
buildCommand = ''
mkdir -p $out/lib
ln -s $out $lib
ln -s ${bootstrapTools}/bin $out/bin
ln -s ${bootstrapTools}/lib/clang $out/lib
ln -s ${bootstrapTools}/include $out
'';
passthru.isFromBootstrapFiles = true;
};
clang-unwrapped = selfTools.libclang;
libllvm = self.stdenv.mkDerivation {
name = "bootstrap-stage0-llvm";
outputs = [ "out" "lib" ];
buildCommand = ''
mkdir -p $out/bin $out/lib
ln -s $out $lib
ln -s ${bootstrapTools}/bin/strip $out/bin/llvm-strip
ln -s ${bootstrapTools}/lib/libLLVM* $out/lib
'';
passthru.isFromBootstrapFiles = true;
};
llvm = selfTools.libllvm;
});
libraries = super.llvmPackages.libraries.extend (_: _: {
libcxx = self.stdenv.mkDerivation {
name = "bootstrap-stage0-libcxx";
buildCommand = ''
mkdir -p $out/lib $out/include
ln -s ${bootstrapTools}/lib/libc++.dylib $out/lib
ln -s ${bootstrapTools}/include/c++ $out/include
'';
passthru = {
isLLVM = true;
cxxabi = self.llvmPackages.libcxxabi;
isFromBootstrapFiles = true;
};
};
libcxxabi = self.stdenv.mkDerivation {
name = "bootstrap-stage0-libcxxabi";
buildCommand = ''
mkdir -p $out/lib
ln -s ${bootstrapTools}/lib/libc++abi.dylib $out/lib
'';
passthru = {
libName = "c++abi";
isFromBootstrapFiles = true;
};
};
compiler-rt = self.stdenv.mkDerivation {
name = "bootstrap-stage0-compiler-rt";
buildCommand = ''
mkdir -p $out/lib $out/share
ln -s ${bootstrapTools}/lib/libclang_rt* $out/lib
ln -s ${bootstrapTools}/lib/darwin $out/lib
'';
passthru.isFromBootstrapFiles = true;
};
});
in
{ inherit tools libraries; } // tools // libraries
);
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# The bootstrap tools may use `strip` from cctools, so use a compatible set of flags until LLVM
# is rebuilt, and darwin.binutils can use its implementation instead.
extraPreHook = ''
stripAllFlags=" " # the cctools "strip" command doesn't know "-s"
stripDebugFlags="-S" # the cctools "strip" command does something odd with "-p"
'';
})
# This stage is primarily responsible for building the linker and setting up versions of
# certain dependencies needed by the rest of the build process. It is necessary to rebuild the
# linker because the `compiler-rt` build process checks the version and attempts to manually
# run `codesign` if it detects a version of `ld64` it considers too old. If that happens, the
# build process will fail for a few different reasons:
# - sigtool is too old and does not accept the `--sign` argument;
# - sigtool is new enough to accept the `--sign` argument, but it aborts when it is invoked on a
# binary that is already signed; or
# - compiler-rt attempts to invoke `codesign` on x86_64-darwin, but `sigtool` is not currently
# part of the x86_64-darwin bootstrap tools.
#
# This stage also builds CF and Libsystem to simplify assertions and assumptions for later by
# making sure both packages are present on x86_64-darwin and aarch64-darwin.
(prevStage:
# previous stage0 stdenv:
assert lib.all isFromBootstrapFiles (with prevStage; [ coreutils cpio gnugrep pbzx ]);
assert lib.all isFromBootstrapFiles (with prevStage.darwin; [
binutils-unwrapped cctools print-reexports rewrite-tbd sigtool system_cmds
]);
assert (! useAppleSDKLibs) -> lib.all isFromBootstrapFiles (with prevStage.darwin; [ CF Libsystem ]);
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ dyld launchd xnu ]);
assert lib.all isFromBootstrapFiles (with prevStage.llvmPackages; [
clang-unwrapped libclang libllvm llvm compiler-rt libcxx libcxxabi
]);
stageFun prevStage {
name = "bootstrap-stage1";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
coreutils gnugrep;
cmake = super.cmakeMinimal;
curl = super.curlMinimal;
# Disable tests because they use dejagnu, which fails to run.
libffi = super.libffi.override { doCheck = false; };
# Avoid pulling in a full python and its extra dependencies for the llvm/clang builds.
libxml2 = super.libxml2.override { pythonSupport = false; };
ninja = super.ninja.override { buildDocs = false; };
python3 = super.python3Minimal;
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
inherit (prevStage.darwin) system_cmds;
signingUtils = prevStage.darwin.signingUtils.override {
inherit (selfDarwin) sigtool;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
binutils = superDarwin.binutils.override {
inherit (self) coreutils;
inherit (selfDarwin) postLinkSignHook signingUtils;
bintools = selfDarwin.binutils-unwrapped;
libc = selfDarwin.Libsystem;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
binutils-unwrapped = superDarwin.binutils-unwrapped.override {
inherit (selfDarwin) cctools;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
cctools = selfDarwin.cctools-port;
});
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
inherit (prevStage.llvmPackages) clang-unwrapped libclang libllvm llvm;
});
libraries = super.llvmPackages.libraries.extend (_: _: {
inherit (prevStage.llvmPackages) compiler-rt libcxx libcxxabi;
});
in
{ inherit tools libraries; inherit (prevStage.llvmPackages) release_version; } // tools // libraries
);
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
# The bootstrap tools may use `strip` from cctools, so use a compatible set of flags until LLVM
# is rebuilt, and darwin.binutils can use its implementation instead.
extraPreHook = ''
stripAllFlags=" " # the cctools "strip" command doesn't know "-s"
stripDebugFlags="-S" # the cctools "strip" command does something odd with "-p"
# Dont assume the ld64 in bootstrap tools supports response files. Only recent versions do.
export NIX_LD_USE_RESPONSE_FILE=0
'';
})
# Build sysctl, system_cmds and Python for use by LLVMs check phase. These must be built in their
# own stage, or an infinite recursion results on x86_64-darwin when using the source-based SDK.
(prevStage:
# previous stage1 stdenv:
assert lib.all isFromBootstrapFiles (with prevStage; [ coreutils gnugrep ]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
autoconf automake bash binutils-unwrapped bison brotli cmake cpio curl cyrus_sasl db
ed expat flex gettext gmp groff icu libedit libffi libiconv libidn2 libkrb5 libssh2
libtool libunistring libxml2 m4 ncurses nghttp2 ninja openldap openssh openssl
patchutils pbzx perl pkg-config.pkg-config python3 python3Minimal scons serf sqlite
subversion texinfo unzip which xz zlib zstd
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
binutils-unwrapped cctools locale libtapi print-reexports rewrite-tbd sigtool
]);
assert lib.all isFromBootstrapFiles (with prevStage.darwin; [ system_cmds ]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ CF Libsystem configd ]);
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ dyld launchd xnu ]);
assert lib.all isFromBootstrapFiles (with prevStage.llvmPackages; [
clang-unwrapped libclang libllvm llvm compiler-rt libcxx libcxxabi
]);
assert lib.getVersion prevStage.stdenv.cc.bintools.bintools == "boot";
stageFun prevStage {
name = "bootstrap-stage1-sysctl";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
autoconf automake bash binutils binutils-unwrapped bison brotli cmake cmakeMinimal
coreutils cpio curl cyrus_sasl db ed expat flex gettext gmp gnugrep groff icu
libedit libffi libiconv libidn2 libkrb5 libssh2 libtool libunistring libxml2 m4
ncurses nghttp2 ninja openldap openssh openssl patchutils pbzx perl pkg-config
python3Minimal scons sed serf sharutils sqlite subversion texinfo unzip which xz
zlib zstd;
# Support for the SystemConfiguration framework is required to run the LLVM tests, but trying
# to override python3Minimal does not appear to work.
python3 = (super.python3.override {
inherit (self) libffi;
inherit (self.darwin) configd;
openssl = null;
readline = null;
ncurses = null;
gdbm = null;
sqlite = null;
tzdata = null;
stripConfig = true;
stripIdlelib = true;
stripTests = true;
stripTkinter = true;
rebuildBytecode = false;
stripBytecode = true;
includeSiteCustomize = false;
enableOptimizations = false;
enableLTO = false;
mimetypesSupport = false;
}).overrideAttrs (_: { pname = "python3-minimal-scproxy"; });
darwin = super.darwin.overrideScope (_: superDarwin: {
inherit (prevStage.darwin)
CF Libsystem binutils-unwrapped cctools cctools-port configd darwin-stubs dyld
launchd libclosure libdispatch libobjc locale objc4 postLinkSignHook
print-reexports rewrite-tbd signingUtils sigtool;
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
inherit (prevStage.llvmPackages) clang-unwrapped libclang libllvm llvm;
clang = prevStage.stdenv.cc;
});
libraries = super.llvmPackages.libraries.extend (_: _: {
inherit (prevStage.llvmPackages) compiler-rt libcxx libcxxabi;
});
in
{ inherit tools libraries; inherit (prevStage.llvmPackages) release_version; } // tools // libraries
);
};
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
# Until LLVM is rebuilt, assume `strip` is the one from cctools.
extraPreHook = ''
stripAllFlags=" " # the cctools "strip" command doesn't know "-s"
stripDebugFlags="-S" # the cctools "strip" command does something odd with "-p"
'';
})
# First rebuild of LLVM. While this LLVM is linked to a bunch of junk from the bootstrap tools,
# the libc++ and libc++abi it produces are not. The compiler will be rebuilt in a later stage,
# but those libraries will be used in the final stdenv.
#
# Rebuild coreutils and gnugrep to avoid unwanted references to the bootstrap tools on `PATH`.
(prevStage:
# previous stage-sysctl stdenv:
assert lib.all isFromBootstrapFiles (with prevStage; [ coreutils gnugrep ]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
autoconf automake bash binutils-unwrapped bison brotli cmake cpio curl cyrus_sasl db
ed expat flex gettext gmp groff icu libedit libffi libiconv libidn2 libkrb5 libssh2
libtool libunistring libxml2 m4 ncurses nghttp2 ninja openldap openssh openssl
patchutils pbzx perl pkg-config.pkg-config python3 python3Minimal scons serf sqlite
subversion sysctl.provider texinfo unzip which xz zlib zstd
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
binutils-unwrapped cctools locale libtapi print-reexports rewrite-tbd sigtool system_cmds
]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ CF Libsystem configd ]);
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ dyld launchd xnu ]);
assert lib.all isFromBootstrapFiles (with prevStage.llvmPackages; [
clang-unwrapped libclang libllvm llvm compiler-rt libcxx libcxxabi
]);
assert lib.getVersion prevStage.stdenv.cc.bintools.bintools == lib.getVersion prevStage.darwin.cctools-port;
stageFun prevStage {
name = "bootstrap-stage-xclang";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
autoconf automake bash binutils binutils-unwrapped bison brotli cmake cmakeMinimal
cpio curl cyrus_sasl db ed expat flex gettext gmp groff icu libedit libffi libiconv
libidn2 libkrb5 libssh2 libtool libunistring libxml2 m4 ncurses nghttp2 ninja
openldap openssh openssl patchutils pbzx perl pkg-config python3 python3Minimal
scons sed serf sharutils sqlite subversion sysctl texinfo unzip which xz zlib zstd;
# Switch from cctools-port to cctools-llvm now that LLVM has been built.
darwin = super.darwin.overrideScope (_: superDarwin: {
inherit (prevStage.darwin)
CF Libsystem configd darwin-stubs dyld launchd libclosure libdispatch libobjc
locale objc4 postLinkSignHook print-reexports rewrite-tbd signingUtils sigtool
system_cmds;
# Avoid building unnecessary Python dependencies due to building LLVM manpages.
cctools-llvm = superDarwin.cctools-llvm.override { enableManpages = false; };
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
llvmPackages = super.llvmPackages // (
let
llvmMajor = lib.versions.major super.llvmPackages.release_version;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# libc++, and libc++abi do not need CoreFoundation. Avoid propagating the CF from prior
# stages to the final stdenv via rpath by dropping it from `extraBuildInputs`.
stdenvNoCF = self.stdenv.override {
extraBuildInputs = [ ];
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
libcxxBootstrapStdenv = self.overrideCC stdenvNoCF (self.llvmPackages.clangNoCompilerRtWithLibc.override {
nixSupport.cc-cflags = [ "-nostdlib" ];
nixSupport.cc-ldflags = [ "-lSystem" ];
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
libraries = super.llvmPackages.libraries.extend (selfLib: superLib: {
compiler-rt = null;
libcxx = superLib.libcxx.override ({
inherit (selfLib) libcxxabi;
stdenv = libcxxBootstrapStdenv;
2021-06-02 05:25:56 +01:00
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
libcxxabi = superLib.libcxxabi.override {
stdenv = libcxxBootstrapStdenv;
}
# Setting `standalone = true` is only needed with older verions of LLVM. Newer ones
# automatically do what is necessary to bootstrap lib++abi.
// lib.optionalAttrs (builtins.any (v: llvmMajor == v) [ "7" "11" "12" "13" ]) {
standalone = true;
};
});
in
{ inherit libraries; } // libraries
);
};
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
extraPreHook = ''
stripAllFlags=" " # the cctools "strip" command doesn't know "-s"
stripDebugFlags="-S" # the cctools "strip" command does something odd with "-p"
'';
})
# This stage rebuilds Libsystem.
(prevStage:
# previous stage-xclang stdenv:
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
autoconf automake bash binutils-unwrapped bison cmake cmakeMinimal coreutils cpio
cyrus_sasl db ed expat flex gettext gmp gnugrep groff icu libedit libtool m4 ninja
openbsm openldap openpam openssh patchutils pbzx perl pkg-config.pkg-config python3
python3Minimal scons serf sqlite subversion sysctl.provider texinfo unzip which xz
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
brotli curl libffi libiconv libidn2 libkrb5 libssh2 libunistring libxml2 ncurses
nghttp2 openssl zlib zstd
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
binutils-unwrapped cctools locale libtapi print-reexports rewrite-tbd sigtool system_cmds
]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ CF Libsystem configd ]);
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ dyld launchd libclosure libdispatch xnu ]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.llvmPackages; [
clang-unwrapped libclang libllvm llvm
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.llvmPackages; [ libcxx libcxxabi ]);
assert prevStage.llvmPackages.compiler-rt == null;
assert lib.getVersion prevStage.stdenv.cc.bintools.bintools == lib.getVersion prevStage.darwin.cctools-port;
stageFun prevStage {
name = "bootstrap-stage2-Libsystem";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
autoconf automake bash binutils-unwrapped bison brotli cmake cmakeMinimal coreutils
cpio curl cyrus_sasl db ed expat flex gettext gmp gnugrep groff icu libedit libffi
libiconv libidn2 libkrb5 libssh2 libtool libunistring libxml2 m4 ncurses nghttp2
ninja openbsm openldap openpam openssh openssl patchutils pbzx perl pkg-config
python3 python3Minimal scons serf sqlite subversion sysctl texinfo unzip which xz
zlib zstd;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
inherit (prevStage.darwin)
CF binutils-unwrapped cctools configd darwin-stubs launchd libobjc libtapi locale
objc4 print-reexports rewrite-tbd signingUtils sigtool system_cmds;
});
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
inherit (prevStage.llvmPackages) clang-unwrapped clangNoCompilerRtWithLibc libclang libllvm llvm;
});
libraries = super.llvmPackages.libraries.extend (selfLib: superLib: {
inherit (prevStage.llvmPackages) compiler-rt libcxx libcxxabi;
});
in
{ inherit tools libraries; inherit (prevStage.llvmPackages) release_version; } // tools // libraries
);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Dont link anything in this stage against CF to prevent propagating CF from prior stages to
# the final stdenv, which happens because of the rpath hook.
stdenv =
let
stdenvNoCF = super.stdenv.override {
extraBuildInputs = [ ];
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
in
self.overrideCC stdenvNoCF (self.llvmPackages.clangNoCompilerRtWithLibc.override {
inherit (self.llvmPackages) libcxx;
extraPackages = [ self.llvmPackages.libcxxabi ];
});
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
'';
})
# This stage rebuilds CF and compiler-rt.
#
# CF requires:
# - aarch64-darwin: libobjc (due to being apple_sdk.frameworks.CoreFoundation instead of swift-corefoundation)
# - x86_64-darwin: libiconv libxml2 icu zlib
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
(prevStage:
# previous stage2-Libsystem stdenv:
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
autoconf automake bash binutils-unwrapped bison brotli cmake cmakeMinimal coreutils
cpio curl cyrus_sasl db ed expat flex gettext gmp gnugrep groff icu libedit libidn2
libkrb5 libssh2 libtool libunistring m4 nghttp2 ninja openbsm openldap openpam openssh
openssl patchutils pbzx perl pkg-config.pkg-config python3 python3Minimal scons serf
sqlite subversion sysctl.provider texinfo unzip which xz zstd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
libffi libiconv libxml2 ncurses zlib zstd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
binutils-unwrapped cctools locale libtapi print-reexports rewrite-tbd sigtool system_cmds
]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ CF configd ]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [ Libsystem ]);
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ dyld launchd libclosure libdispatch xnu ]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.llvmPackages; [
clang-unwrapped libclang libllvm llvm
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.llvmPackages; [ libcxx libcxxabi ]);
assert prevStage.llvmPackages.compiler-rt == null;
assert lib.getVersion prevStage.stdenv.cc.bintools.bintools == lib.getVersion prevStage.darwin.cctools-llvm;
stageFun prevStage {
name = "bootstrap-stage2-CF";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
autoconf automake bash bison brotli cmake cmakeMinimal coreutils cpio curl
cyrus_sasl db ed expat flex gettext gmp gnugrep groff libedit libidn2 libkrb5
libssh2 libtool libunistring m4 ncurses nghttp2 ninja openbsm openldap openpam
openssh openssl patchutils pbzx perl pkg-config python3 python3Minimal scons serf
sqlite subversion sysctl texinfo unzip which xz zstd;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Avoid pulling in a full python and its extra dependencies for the llvm/clang builds.
libxml2 = super.libxml2.override { pythonSupport = false; };
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
inherit (prevStage.darwin)
Libsystem configd darwin-stubs launchd locale print-reexports rewrite-tbd
signingUtils sigtool system_cmds;
# Rewrap binutils so it uses the rebuilt Libsystem.
binutils = superDarwin.binutils.override {
buildPackages = {
inherit (prevStage) stdenv;
};
libc = selfDarwin.Libsystem;
} // {
passthru = { inherit (prevStage.bintools.passthru) isFromBootstrapFiles; };
};
# Avoid building unnecessary Python dependencies due to building LLVM manpages.
cctools-llvm = superDarwin.cctools-llvm.override { enableManpages = false; };
});
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
inherit (prevStage.llvmPackages) clang-unwrapped clangNoCompilerRtWithLibc libclang libllvm llvm;
clang = prevStage.stdenv.cc;
});
libraries = super.llvmPackages.libraries.extend (selfLib: superLib: {
inherit (prevStage.llvmPackages) libcxx libcxxabi;
# Make sure compiler-rt is linked against the CF from this stage, which can be
# propagated to the final stdenv. CF is required by ASAN.
compiler-rt = superLib.compiler-rt.override ({
inherit (selfLib) libcxxabi;
inherit (self.llvmPackages) libllvm;
stdenv = self.stdenv.override {
extraBuildInputs = [ self.darwin.CF ];
2021-06-02 05:25:56 +01:00
};
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
});
in
{ inherit tools libraries; inherit (prevStage.llvmPackages) release_version; } // tools // libraries
);
2021-06-02 05:25:56 +01:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Dont link anything in this stage against CF to prevent propagating CF from prior stages to
# the final stdenv, which happens because of the rpath hook. Also dont use a stdenv with
# compiler-rt because it needs to be built in this stage.
stdenv =
let
stdenvNoCF = super.stdenv.override {
extraBuildInputs = [ ];
};
in
self.overrideCC stdenvNoCF (self.llvmPackages.clangNoCompilerRtWithLibc.override {
inherit (self.llvmPackages) libcxx;
# Make sure the stdenv is using the Libsystem that will be propagated to the final stdenv.
libc = self.darwin.Libsystem;
bintools = self.llvmPackages.clangNoCompilerRtWithLibc.bintools.override {
libc = self.darwin.Libsystem;
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraPackages = [ self.llvmPackages.libcxxabi ];
});
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
'';
})
# Rebuild LLVM with LLVM. This stage also rebuilds certain dependencies needed by LLVM.
#
# LLVM requires: libcxx libcxxabi libffi libiconv libxml2 ncurses zlib
(prevStage:
# previous stage2-CF stdenv:
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
autoconf automake bash bison brotli cmake cmakeMinimal coreutils cpio curl cyrus_sasl
db ed expat flex gettext gmp gnugrep groff libedit libidn2 libkrb5 libssh2 libtool
libunistring m4 ncurses nghttp2 ninja openbsm openldap openpam openssh openssl
patchutils pbzx perl pkg-config.pkg-config python3 python3Minimal scons serf sqlite
subversion sysctl.provider texinfo unzip which xz zstd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage; [
binutils-unwrapped icu libffi libiconv libxml2 zlib
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
locale print-reexports rewrite-tbd sigtool system_cmds
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [
binutils-unwrapped cctools libtapi
]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ configd ]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [ CF Libsystem ]);
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ dyld launchd libclosure libdispatch xnu ]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.llvmPackages; [
clang-unwrapped libclang libllvm llvm
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.llvmPackages; [ libcxx libcxxabi ]);
assert lib.getVersion prevStage.stdenv.cc.bintools.bintools == lib.getVersion prevStage.darwin.cctools-llvm;
stageFun prevStage {
name = "bootstrap-stage3";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
autoconf automake bash binutils binutils-unwrapped bison brotli cmake cmakeMinimal
coreutils cpio curl cyrus_sasl db ed expat flex gettext gmp gnugrep groff libedit
libidn2 libkrb5 libssh2 libtool libunistring m4 nghttp2 ninja openbsm openldap
openpam openssh openssl patchutils pbzx perl pkg-config python3 python3Minimal scons
sed serf sharutils sqlite subversion sysctl texinfo unzip which xz zstd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# CF dependencies - dont rebuild them.
icu libiconv libxml2 zlib;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Disable tests because they use dejagnu, which fails to run.
libffi = super.libffi.override { doCheck = false; };
2021-06-02 05:25:56 +01:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
inherit (prevStage.darwin)
CF Libsystem binutils binutils-unwrapped cctools cctools-llvm cctools-port configd
darwin-stubs dyld launchd libclosure libdispatch libobjc libtapi locale objc4
postLinkSignHook print-reexports rewrite-tbd signingUtils sigtool system_cmds;
});
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
llvmPackages = super.llvmPackages // (
let
libraries = super.llvmPackages.libraries.extend (_: _: {
inherit (prevStage.llvmPackages) compiler-rt libcxx libcxxabi;
});
in
{ inherit libraries; } // libraries
);
};
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
'';
})
# Construct a standard environment with the new clang. Also use the new compiler to rebuild
# everything that will be part of the final stdenv and isnt required by it, CF, or Libsystem.
(prevStage:
# previous stage3 stdenv:
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
autoconf automake bash bison brotli cmake cmakeMinimal coreutils cpio curl cyrus_sasl
db ed expat flex gettext gmp gnugrep groff libedit libidn2 libkrb5 libssh2 libtool
libunistring m4 nghttp2 ninja openbsm openldap openpam openssh openssl patchutils pbzx
perl pkg-config.pkg-config python3 python3Minimal scons serf sqlite subversion
sysctl.provider texinfo unzip which xz zstd
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage; [
binutils-unwrapped icu libffi libiconv libxml2 zlib
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [
locale print-reexports rewrite-tbd sigtool system_cmds
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [
binutils-unwrapped cctools libtapi
]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByBootstrapFilesCompiler (with prevStage.darwin; [ configd ]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [ CF Libsystem ]);
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ dyld launchd libclosure libdispatch xnu ]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.llvmPackages; [
clang-unwrapped libclang libllvm llvm compiler-rt libcxx libcxxabi
]);
assert lib.getVersion prevStage.stdenv.cc.bintools.bintools == lib.getVersion prevStage.darwin.cctools-llvm;
stageFun prevStage {
name = "bootstrap-stage4";
overrides = self: super: {
inherit (prevStage) ccWrapperStdenv
autoconf automake bison cmake cmakeMinimal cpio cyrus_sasl db expat flex groff
libedit libtool m4 ninja openldap openssh patchutils pbzx perl pkg-config python3
python3Minimal scons serf sqlite subversion sysctl texinfo unzip which
# CF dependencies - dont rebuild them.
icu
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# LLVM dependencies - dont rebuild them.
libffi libiconv libxml2 ncurses zlib;
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin = super.darwin.overrideScope (selfDarwin: superDarwin: {
inherit (prevStage.darwin) dyld CF Libsystem darwin-stubs
# CF dependencies - dont rebuild them.
libobjc objc4;
2021-06-02 05:25:56 +01:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
signingUtils = superDarwin.signingUtils.override {
inherit (selfDarwin) sigtool;
};
2021-06-02 05:25:56 +01:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
binutils = superDarwin.binutils.override {
shell = self.bash + "/bin/bash";
buildPackages = {
inherit (prevStage) stdenv;
2021-06-02 05:25:56 +01:00
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
bintools = selfDarwin.binutils-unwrapped;
libc = selfDarwin.Libsystem;
};
});
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
inherit (prevStage.llvmPackages) clang-unwrapped libclang libllvm llvm;
libcxxClang = lib.makeOverridable (import ../../build-support/cc-wrapper) {
nativeTools = false;
nativeLibc = false;
buildPackages = {
inherit (prevStage) stdenv;
};
extraPackages = [
self.llvmPackages.libcxxabi
self.llvmPackages.compiler-rt
];
extraBuildCommands =
let
inherit (self.llvmPackages) clang-unwrapped compiler-rt release_version;
# Clang 16+ uses only the major version in resource-root, but older versions use the complete one.
clangResourceRootIncludePath = clangLib: clangRelease:
let
clangVersion =
if lib.versionAtLeast clangRelease "16"
then lib.versions.major clangRelease
else clangRelease;
in
"${clangLib}/lib/clang/${clangVersion}/include";
in
''
rsrc="$out/resource-root"
mkdir "$rsrc"
ln -s "${clangResourceRootIncludePath clang-unwrapped.lib release_version}" "$rsrc"
ln -s "${compiler-rt.out}/lib" "$rsrc/lib"
ln -s "${compiler-rt.out}/share" "$rsrc/share"
echo "-resource-dir=$rsrc" >> $out/nix-support/cc-cflags
'';
cc = self.llvmPackages.clang-unwrapped;
bintools = self.darwin.binutils;
isClang = true;
libc = self.darwin.Libsystem;
inherit (self.llvmPackages) libcxx;
inherit lib;
inherit (self) stdenvNoCC coreutils gnugrep;
shell = self.bash + "/bin/bash";
};
});
libraries = super.llvmPackages.libraries.extend (_: _:{
inherit (prevStage.llvmPackages) compiler-rt libcxx libcxxabi;
});
in
{ inherit tools libraries; } // tools // libraries
);
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
];
extraPreHook = ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
'';
})
# Construct the final stdenv. The version of LLVM provided should match the one defined in
# `all-packages.nix` for Darwin. Nothing should depend on the bootstrap tools or originate from
# the bootstrap tools.
#
# When updating the Darwin stdenv, make sure that the result has no dependency (`nix-store -qR`)
# on `bootstrapTools` or the binutils built in stage 1.
(prevStage:
# previous stage4 stdenv:
assert lib.all isBuiltByNixpkgsCompiler (with prevStage; [
bash binutils-unwrapped brotli bzip2 curl diffutils ed file findutils gawk gettext gmp
gnugrep gnumake gnused gnutar gzip icu libffi libiconv libidn2 libkrb5 libssh2
libunistring libxml2 ncurses nghttp2 openbsm openpam openssl patch pcre xz zlib zstd
]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [
binutils-unwrapped cctools libtapi locale print-reexports rewrite-tbd sigtool system_cmds
]);
assert (! useAppleSDKLibs) -> lib.all isBuiltByNixpkgsCompiler (with prevStage.darwin; [ CF Libsystem configd ]);
assert useAppleSDKLibs -> lib.all isFromNixpkgs (with prevStage.darwin; [ CF Libsystem libobjc ]);
assert lib.all isFromNixpkgs (with prevStage.darwin; [ dyld launchd libclosure libdispatch xnu ]);
assert lib.all isBuiltByNixpkgsCompiler (with prevStage.llvmPackages; [
clang-unwrapped libclang libllvm llvm compiler-rt libcxx libcxxabi
]);
assert lib.all isBuiltByBootstrapFilesCompiler (with prevStage; [
autoconf automake bison cmake cmakeMinimal cpio cyrus_sasl db expat flex groff libedit
libtool m4 ninja openldap openssh patchutils pbzx perl pkg-config.pkg-config python3
python3Minimal scons serf sqlite subversion sysctl.provider texinfo unzip which
]);
assert prevStage.darwin.cctools == prevStage.darwin.cctools-llvm;
2021-06-02 05:25:56 +01:00
let
doSign = localSystem.isAarch64;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
cc = prevStage.llvmPackages.clang;
2021-06-02 05:25:56 +01:00
in
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
{
inherit config overlays;
stdenv = import ../generic {
2021-06-02 05:25:56 +01:00
name = "stdenv-darwin";
2021-06-02 05:25:56 +01:00
buildPlatform = localSystem;
hostPlatform = localSystem;
targetPlatform = localSystem;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit config;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
preHook = (commonPreHook prevStage) + ''
stripDebugFlags="-S" # llvm-strip does not support "-p" for Mach-O
export PATH_LOCALE=${prevStage.darwin.locale}/share/locale
'';
2020-11-19 08:28:20 +00:00
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
initialPath = ((import ../generic/common-path.nix) { pkgs = prevStage; });
2021-06-02 05:25:56 +01:00
extraNativeBuildInputs = lib.optionals localSystem.isAarch64 [
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
prevStage.updateAutotoolsGnuConfigScriptsHook
2021-06-02 05:25:56 +01:00
];
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
extraBuildInputs = [ prevStage.darwin.CF ];
inherit cc;
shell = cc.shell;
inherit (prevStage.stdenv) fetchurlBoot;
2021-06-02 05:25:56 +01:00
extraAttrs = {
inherit bootstrapTools;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
libc = prevStage.darwin.Libsystem;
shellPackage = prevStage.bash;
} // lib.optionalAttrs useAppleSDKLibs {
# This objc4 will be propagated to all builds using the final stdenv,
# and we shouldn't mix different builds, because they would be
# conflicting LLVM modules. Export it here so we can grab it later.
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit (prevStage.darwin) objc4;
2021-06-02 05:25:56 +01:00
};
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
disallowedRequisites = [ bootstrapTools.out ];
allowedRequisites = (with prevStage; [
bash
binutils.bintools
binutils.bintools.lib
2021-06-02 05:25:56 +01:00
bzip2.bin
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
bzip2.out
cc.expand-response-params
2021-06-02 05:25:56 +01:00
coreutils
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
darwin.binutils
darwin.binutils.bintools
2021-06-02 05:25:56 +01:00
diffutils
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
ed
file
findutils
2021-06-02 05:25:56 +01:00
gawk
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
gettext
gmp.out
2021-06-02 05:25:56 +01:00
gnugrep
gnugrep.pcre2.out
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
gnumake
gnused
gnutar
gzip
icu.out
libffi.out
libiconv
libunistring.out
2021-06-02 05:25:56 +01:00
libxml2.out
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
ncurses.dev
ncurses.man
ncurses.out
openbsm
openpam
patch
xz.bin
xz.out
zlib.dev
zlib.out
]
++ lib.optionals doSign [ openssl.out ])
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
++ lib.optionals localSystem.isAarch64 [
prevStage.updateAutotoolsGnuConfigScriptsHook
prevStage.gnu-config
]
++ (with prevStage.llvmPackages; [
bintools-unwrapped
clang-unwrapped
clang-unwrapped.lib
compiler-rt
compiler-rt.dev
2021-06-02 05:25:56 +01:00
libcxx
libcxx.dev
libcxxabi
libcxxabi.dev
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
lld
2021-06-02 05:25:56 +01:00
llvm
llvm.lib
])
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
++ (with prevStage.darwin; [
2021-06-02 05:25:56 +01:00
CF
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
Libsystem
cctools-llvm
cctools-port
dyld
2021-06-02 05:25:56 +01:00
libtapi
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
locale
system_cmds
]
++ lib.optional useAppleSDKLibs [ objc4 ]
2021-06-02 05:25:56 +01:00
++ lib.optionals doSign [ postLinkSignHook sigtool signingUtils ]);
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
__stdenvImpureHostDeps = commonImpureHostDeps;
__extraImpureHostDeps = commonImpureHostDeps;
overrides = self: super: {
inherit (prevStage)
bash binutils brotli bzip2 coreutils curl diffutils ed file findutils gawk gettext
gmp gnugrep gnumake gnused gnutar gzip icu libffi libiconv libidn2 libssh2
libunistring libxml2 ncurses nghttp2 openbsm openpam openssl patch pcre xz zlib
zstd;
darwin = super.darwin.overrideScope (_: _: {
inherit (prevStage.darwin)
CF ICU Libsystem darwin-stubs dyld locale libobjc libtapi system_cmds xnu;
} // lib.optionalAttrs (super.stdenv.targetPlatform == localSystem) {
inherit (prevStage.darwin) binutils binutils-unwrapped cctools-llvm cctools-port;
2021-06-02 05:25:56 +01:00
});
} // lib.optionalAttrs (super.stdenv.targetPlatform == localSystem) {
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
inherit (prevStage.llvmPackages) clang llvm;
darwin.stdenv: refactor stdenv definition In preparation for bumping the LLVM used by Darwin, this change refactors and reworks the stdenv build process. When it made sense, existing behaviors were kept to avoid causing any unwanted breakage. However, there are some differences. The reasoning and differences are discussed below. - Improved cycle times - Working on the Darwin stdenv was a tedious process because `allowedRequisites` determined what was allowed between stages. If you made a mistake, you might have to wait a considerable amount of time for the build to fail. Using assertions makes many errors fail at evaluation time and makes moving things around safer and easier to do. - Decoupling from bootstrap tools - The stdenv build process builds as much as it can in the early stages to remove the requirement that the bootstrap tools need bumped in order to bump the stdenv itself. This should lower the barrier to updates and make it easier to bump in the future. It also allows changes to be made without requiring additional tools be added to the bootstrap tools. - Patterned after the Linux stdenv - I tried to follow the patterns established in the Linux stdenv with adaptations made to Darwin’s needs. My hope is this makes the Darwin stdenv more approable for non-Darwin developers who made need to interact with it. It also allowed some of the hacks to be removed. - Documentation - Comments were added explaining what was happening and why things were being done. This is particular important for some stages that might not be obvious (such as the sysctl stage). - Cleanup - Converting the intermediate `allowedRequisites` to assertions revealed that many packages were being referenced that no longer exist or have been renamed. Removing them reduces clutter and should help make the stdenv bootstrap process be more understandable.
2023-05-10 08:03:00 +01:00
# Need to get rid of these when cross-compiling.
llvmPackages = super.llvmPackages // (
let
tools = super.llvmPackages.tools.extend (_: _: {
inherit (prevStage.llvmPackages) clang clang-unwrapped libclang libllvm llvm;
});
libraries = super.llvmPackages.libraries.extend (_: _: {
inherit (prevStage.llvmPackages) compiler-rt libcxx libcxxabi;
});
in
{ inherit tools libraries; } // tools // libraries
);
inherit (prevStage) binutils binutils-unwrapped;
};
};
})
# This "no-op" stage is just a place to put the assertions about stage6.
(prevStage:
# previous final stage stdenv:
assert isBuiltByNixpkgsCompiler prevStage.darwin.sigtool;
assert isBuiltByNixpkgsCompiler prevStage.darwin.binutils-unwrapped;
assert isBuiltByNixpkgsCompiler prevStage.darwin.print-reexports;
assert isBuiltByNixpkgsCompiler prevStage.darwin.rewrite-tbd;
assert isBuiltByNixpkgsCompiler prevStage.darwin.cctools;
assert isFromNixpkgs prevStage.darwin.CF;
assert isFromNixpkgs prevStage.darwin.Libsystem;
assert isBuiltByNixpkgsCompiler prevStage.llvmPackages.clang-unwrapped;
assert isBuiltByNixpkgsCompiler prevStage.llvmPackages.libllvm;
assert isBuiltByNixpkgsCompiler prevStage.llvmPackages.libcxx;
assert isBuiltByNixpkgsCompiler prevStage.llvmPackages.libcxxabi;
assert isBuiltByNixpkgsCompiler prevStage.llvmPackages.compiler-rt;
{ inherit (prevStage) config overlays stdenv; })
]