This is executed curing the build, and usually quite helpful in telling
you how the build failed, if it failed.
For example, when linking against system libraries, it shows which
system lib could not be discovered, the pkg-config path used etc.
Not showing it simply removes all this, and trying to parse out the
"important" bits and only show these is probably also brittle.
The output generally isn't that spammy normally, so let's just `tee` it.
In order to allow for the new `cargo::` prefix for build script outputs
we have to adjust the configure-crate bash scripts in buildRustCrate to
properly parse the new additional syntax.
These changes don't affect existing build scripts configured with the
old `cargo:` prefix.
For more information, see https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script
We need this stuff to be available in lib so make-derivation.nix can
access it to construct the Meson cross file.
This has a couple of other advantages:
- It makes Rust less special. Now figuring out what Rust calls a
platform is the same as figuring out what Linux or QEMU call it.
- We can unify the schema used to define Rust targets, and the schema
used to access those values later. Just like you can set "config"
or "system" in a platform definition, and then access those same
keys on the elaborated platform, you can now set "rustcTarget" in
your crossSystem, and then access "stdenv.hostPlatform.rustcTarget"
in your code.
"rustcTarget", "rustcTargetSpec", "cargoShortTarget", and
"cargoEnvVarTarget" have the "rustc" and "cargo" prefixes because
these are not exposed to code by the compiler, and are not
standardized. The arch/os/etc. variables are all named to match the
forms in the Rust target spec JSON.
The new rust.target-family only takes a list, since we don't need to
worry about backwards compatibility when that name is used.
The old APIs are all still functional with no warning for now, so that
it's possible for external code to use a single API on both 23.05 and
23.11. We can introduce the warnings once 23.05 is EOL, and make them
hard errors when 23.11 is EOL.
There are two problems: first that we end up splitting on spaces in the
loop. Even when that is fixed, we still would split on spaces in the
`export` inside the loop. We need to guard against both.
Fixes#199298
Confirmed that it fixes the case mentioned in the ticket:
```console
[nix-develop]$ $(nix-build -I nixpkgs=/home/shana/programming/nixpkgs Cargo.nix -A rootCrate.build --no-out-link)/bin/nix-rustc-env-escape-repro
Expecting three words, got: first second third
```
I think this is going to cause a rebuild of every Rust package even if
they were unaffected, not much we can do here.
This parameter is being set to `$NIX_BUILD_CORES` by default. This is a
standard practice but there's a suspicion that this can produce broken
builds. For some details see
https://github.com/cargo2nix/cargo2nix/issues/184 . As a
work-around/test, it'd be good if codegen-units can be set to something
constant, such as `1`. This PR allows it.
Note that the default of `$NIX_BUILD_CORES` is preserved so this MR
causes no change in default behaviour and no rebuilds.
According to rustc implementation[1], `-C incremental=no` enables
incremental builds with directory name `no`. This patch removes the
`-C incremental` argument to disable incremental builds.
[1]: ee86f96ba1/compiler/rustc_session/src/options.rs (L918-L919)
Bofore this change, NUM_JOBS was set to 1. Some crates for building
C/C++ code (e.g. the cc and cmake crates), rely on this variable to
set the number of jobs. As a consequence, we were compiling embedded
libraries serially. Change this to NIX_BUILD_CORES to permit parallel
builds.
Prior discussion:
https://github.com/NixOS/nixpkgs/pull/50452#issuecomment-439407547
Cargo sets `CARGO_FEATURE_*` for all features when running a build
script:
https://doc.rust-lang.org/cargo/reference/environment-variables.html#environment-variables-cargo-sets-for-build-scripts
Some crates have build scripts (e.g. openblas-src) that rely on the
feature variables being properly set.
Since we now need several representations of features, this change
also updates `createFeatures` to be a list of features, rather than
`rustc` feature arguments. `configureCrate` and `buildCrate` then
build the required representations as-needed.
Fixes#68978
According to the Cargo documentation:
> The build script does not have access to the dependencies listed in
> the dependencies or dev-dependencies section (they’re not built
> yet!). Also, build dependencies are not available to the package
> itself unless also explicitly added in the [dependencies] table.
https://doc.rust-lang.org/cargo/reference/build-scripts.html
This change separates linkage of regular dependencies and build
dependencies.
* Make errors include the crate name and make them much more prominent.
* Move more code into lib.sh
* Already source generated logging code and lib.sh in configure
We can just use `lib` instead of `builtins` in all cases but the
`hashString` case. Also changed a few lines to make use of some optional
helpers from lib.
Quoting from the splitString docstring:
NOTE: this function is not performant and should never be used.
This replaces trivial uses of splitString for splitting version
strings with the (potentially builtin) splitVersion.
Before this change, buildRustCrate always called rustc with
--extern libName=[...]libName[...]
However, Cargo permits using a different name under which a dependency
is known to a crate. For example, rand 0.7.0 uses:
[dependencies]
getrandom_package = { version = "0.1.1", package = "getrandom", optional = true }
Which introduces the getrandom dependency such that it is known as
getrandom_package to the rand crate. In this case, the correct extern
flag is of the form
--extern getrandom_package=[...]getrandom[...]
which is currently not supported. In order to support such cases, this
change introduces a crateRenames argument to buildRustCrate. This
argument is an attribute set of dependencies that should be renamed. In
this case, crateRenames would be:
{
"getrandom" = "getrandom_package";
}
The extern options are then built such that if the libName occurs as
an attribute in this set, it value will be used as the local
name. Otherwise libName will be used as before.
While it is not obvious from the source, cargo sets CARGO_MANIFEST_DIR to an absolute directory. This let to a build problem with the popular "tera" crate using the "pest" crate.
## Cargo details
The variable is set here:
f7c91ba622/src/cargo/core/compiler/compilation.rs (L229)
and computed from the `manifest_path`:
f7c91ba622/src/cargo/core/package.rs (L163)
The manifest path is also exported via `cargo metadata` where you can see that it is absolute.
The build expression got quiet large over time and to make it a bit
easier to grasp the different scripts involved in the build are now
separated from the nix file.