nixos/wrappers: fix applying capabilities

With libcap 2.41 the output of cap_to_text changed, also the original
author of code hoped that this would never happen.
To counter this now the security-wrapper only relies on the syscall
ABI, which is more stable and robust than string parsing. If new
breakages occur this will be more obvious because version numbers will
be incremented.
Furthermore all errors no make execution explicitly fail instead of
hiding errors behind debug environment variables and the code style was
more consistent with no goto fail; goto fail; vulnerabilities (https://gotofail.com/)
This commit is contained in:
Jörg Thalheim 2021-01-14 08:24:27 +01:00
parent 8fcb5db84c
commit eadffd9154
No known key found for this signature in database
GPG Key ID: 003F2096411B5F92
3 changed files with 181 additions and 174 deletions

View File

@ -10,16 +10,8 @@ let
(n: v: (if v ? program then v else v // {program=n;}))
wrappers);
securityWrapper = pkgs.stdenv.mkDerivation {
name = "security-wrapper";
phases = [ "installPhase" "fixupPhase" ];
buildInputs = [ pkgs.libcap pkgs.libcap_ng pkgs.linuxHeaders ];
hardeningEnable = [ "pie" ];
installPhase = ''
mkdir -p $out/bin
$CC -Wall -O2 -DWRAPPER_DIR=\"${parentWrapperDir}\" \
-lcap-ng -lcap ${./wrapper.c} -o $out/bin/security-wrapper
'';
securityWrapper = pkgs.callPackage ./wrapper.nix {
inherit parentWrapperDir;
};
###### Activation script for the setcap wrappers

View File

@ -4,15 +4,17 @@
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/xattr.h>
#include <fcntl.h>
#include <dirent.h>
#include <assert.h>
#include <errno.h>
#include <linux/capability.h>
#include <sys/capability.h>
#include <sys/prctl.h>
#include <limits.h>
#include <cap-ng.h>
#include <stdint.h>
#include <syscall.h>
#include <byteswap.h>
// Make sure assertions are not compiled out, we use them to codify
// invariants about this program and we want it to fail fast and
@ -23,182 +25,172 @@ extern char **environ;
// The WRAPPER_DIR macro is supplied at compile time so that it cannot
// be changed at runtime
static char * wrapperDir = WRAPPER_DIR;
static char *wrapper_dir = WRAPPER_DIR;
// Wrapper debug variable name
static char * wrapperDebug = "WRAPPER_DEBUG";
static char *wrapper_debug = "WRAPPER_DEBUG";
// Update the capabilities of the running process to include the given
// capability in the Ambient set.
static void set_ambient_cap(cap_value_t cap)
{
capng_get_caps_process();
#define CAP_SETPCAP 8
if (capng_update(CAPNG_ADD, CAPNG_INHERITABLE, (unsigned long) cap))
{
perror("cannot raise the capability into the Inheritable set\n");
exit(1);
#if __BYTE_ORDER == __BIG_ENDIAN
#define LE32_TO_H(x) bswap_32(x)
#else
#define LE32_TO_H(x) (x)
#endif
int get_last_cap(unsigned *last_cap) {
FILE* file = fopen("/proc/sys/kernel/cap_last_cap", "r");
if (file == NULL) {
int saved_errno = errno;
fprintf(stderr, "failed to open /proc/sys/kernel/cap_last_cap: %s\n", strerror(errno));
return -saved_errno;
}
capng_apply(CAPNG_SELECT_CAPS);
if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, (unsigned long) cap, 0, 0))
{
perror("cannot raise the capability into the Ambient set\n");
exit(1);
int res = fscanf(file, "%u", last_cap);
if (res == EOF) {
int saved_errno = errno;
fprintf(stderr, "could not read number from /proc/sys/kernel/cap_last_cap: %s\n", strerror(errno));
return -saved_errno;
}
fclose(file);
return 0;
}
// Given the path to this program, fetch its configured capability set
// (as set by `setcap ... /path/to/file`) and raise those capabilities
// into the Ambient set.
static int make_caps_ambient(const char *selfPath)
{
cap_t caps = cap_get_file(selfPath);
if(!caps)
{
if(getenv(wrapperDebug))
fprintf(stderr, "no caps set or could not retrieve the caps for this file, not doing anything...");
static int make_caps_ambient(const char *self_path) {
struct vfs_ns_cap_data data = {};
int r = getxattr(self_path, "security.capability", &data, sizeof(data));
if (r < 0) {
if (errno == ENODATA) {
// no capabilities set
return 0;
}
fprintf(stderr, "cannot get capabilities for %s: %s", self_path, strerror(errno));
return 1;
}
// We use `cap_to_text` and iteration over the tokenized result
// string because, as of libcap's current release, there is no
// facility for retrieving an array of `cap_value_t`'s that can be
// given to `prctl` in order to lift that capability into the
// Ambient set.
//
// Some discussion was had around shot-gunning all of the
// capabilities we know about into the Ambient set but that has a
// security smell and I deemed the risk of the current
// implementation crashing the program to be lower than the risk
// of a privilege escalation security hole being introduced by
// raising all capabilities, even ones we didn't intend for the
// program, into the Ambient set.
//
// `cap_t` which is returned by `cap_get_*` is an opaque type and
// even if we could retrieve the bitmasks (which, as far as I can
// tell we cannot) in order to get the `cap_value_t`
// representation for each capability we would have to take the
// total number of capabilities supported and iterate over the
// sequence of integers up-to that maximum total, testing each one
// against the bitmask ((bitmask >> n) & 1) to see if it's set and
// aggregating each "capability integer n" that is set in the
// bitmask.
//
// That, combined with the fact that we can't easily get the
// bitmask anyway seemed much more brittle than fetching the
// `cap_t`, transforming it into a textual representation,
// tokenizing the string, and using `cap_from_name` on the token
// to get the `cap_value_t` that we need for `prctl`. There is
// indeed risk involved if the output string format of
// `cap_to_text` ever changes but at this time the combination of
// factors involving the below list have led me to the conclusion
// that the best implementation at this time is reading then
// parsing with *lots of documentation* about why we're doing it
// this way.
//
// 1. No explicit API for fetching an array of `cap_value_t`'s or
// for transforming a `cap_t` into such a representation
// 2. The risk of a crash is lower than lifting all capabilities
// into the Ambient set
// 3. libcap is depended on heavily in the Linux ecosystem so
// there is a high chance that the output representation of
// `cap_to_text` will not change which reduces our risk that
// this parsing step will cause a crash
//
// The preferred method, should it ever be available in the
// future, would be to use libcap API's to transform the result
// from a `cap_get_*` into an array of `cap_value_t`'s that can
// then be given to prctl.
//
// - Parnell
ssize_t capLen;
char* capstr = cap_to_text(caps, &capLen);
cap_free(caps);
// TODO: For now, we assume that cap_to_text always starts its
// result string with " =" and that the first capability is listed
// immediately after that. We should verify this.
assert(capLen >= 2);
capstr += 2;
char* saveptr = NULL;
for(char* tok = strtok_r(capstr, ",", &saveptr); tok; tok = strtok_r(NULL, ",", &saveptr))
{
cap_value_t capnum;
if (cap_from_name(tok, &capnum))
{
if(getenv(wrapperDebug))
fprintf(stderr, "cap_from_name failed, skipping: %s", tok);
}
else if (capnum == CAP_SETPCAP)
{
// Check for the cap_setpcap capability, we set this on the
// wrapper so it can elevate the capabilities to the Ambient
// set but we do not want to propagate it down into the
// wrapped program.
//
// TODO: what happens if that's the behavior you want
// though???? I'm preferring a strict vs. loose policy here.
if(getenv(wrapperDebug))
fprintf(stderr, "cap_setpcap in set, skipping it\n");
}
else
{
set_ambient_cap(capnum);
if(getenv(wrapperDebug))
fprintf(stderr, "raised %s into the Ambient capability set\n", tok);
}
size_t size;
uint32_t version = LE32_TO_H(data.magic_etc) & VFS_CAP_REVISION_MASK;
switch (version) {
case VFS_CAP_REVISION_1:
size = VFS_CAP_U32_1;
break;
case VFS_CAP_REVISION_2:
case VFS_CAP_REVISION_3:
size = VFS_CAP_U32_3;
break;
default:
fprintf(stderr, "BUG! Unsupported capability version 0x%x on %s. Report to NixOS bugtracker\n", version, self_path);
return 1;
}
const struct __user_cap_header_struct header = {
.version = _LINUX_CAPABILITY_VERSION_3,
.pid = getpid(),
};
struct __user_cap_data_struct user_data[2] = {};
for (size_t i = 0; i < size; i++) {
// merge inheritable & permitted into one
user_data[i].permitted = user_data[i].inheritable =
LE32_TO_H(data.data[i].inheritable) | LE32_TO_H(data.data[i].permitted);
}
if (syscall(SYS_capset, &header, &user_data) < 0) {
fprintf(stderr, "failed to inherit capabilities: %s", strerror(errno));
return 1;
}
unsigned last_cap;
r = get_last_cap(&last_cap);
if (r < 0) {
return 1;
}
uint64_t set = user_data[0].permitted | (uint64_t)user_data[1].permitted << 32;
for (unsigned cap = 0; cap < last_cap; cap++) {
if (!(set & (1ULL << cap))) {
continue;
}
// Check for the cap_setpcap capability, we set this on the
// wrapper so it can elevate the capabilities to the Ambient
// set but we do not want to propagate it down into the
// wrapped program.
//
// TODO: what happens if that's the behavior you want
// though???? I'm preferring a strict vs. loose policy here.
if (cap == CAP_SETPCAP) {
if(getenv(wrapper_debug)) {
fprintf(stderr, "cap_setpcap in set, skipping it\n");
}
continue;
}
if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, (unsigned long) cap, 0, 0)) {
fprintf(stderr, "cannot raise the capability %d into the ambient set: %s\n", cap, strerror(errno));
return 1;
}
if (getenv(wrapper_debug)) {
fprintf(stderr, "raised %d into the ambient capability set\n", cap);
}
}
cap_free(capstr);
return 0;
}
int main(int argc, char * * argv)
{
// I *think* it's safe to assume that a path from a symbolic link
// should safely fit within the PATH_MAX system limit. Though I'm
// not positive it's safe...
char selfPath[PATH_MAX];
int selfPathSize = readlink("/proc/self/exe", selfPath, sizeof(selfPath));
int readlink_malloc(const char *p, char **ret) {
size_t l = FILENAME_MAX+1;
int r;
assert(selfPathSize > 0);
for (;;) {
char *c = calloc(l, sizeof(char));
if (!c) {
return -ENOMEM;
}
// Assert we have room for the zero byte, this ensures the path
// isn't being truncated because it's too big for the buffer.
//
// A better way to handle this might be to use something like the
// whereami library (https://github.com/gpakosz/whereami) or a
// loop that resizes the buffer and re-reads the link if the
// contents are being truncated.
assert(selfPathSize < sizeof(selfPath));
ssize_t n = readlink(p, c, l-1);
if (n < 0) {
r = -errno;
free(c);
return r;
}
// Set the zero byte since readlink doesn't do that for us.
selfPath[selfPathSize] = '\0';
if ((size_t) n < l-1) {
c[n] = 0;
*ret = c;
return 0;
}
free(c);
l *= 2;
}
}
int main(int argc, char **argv) {
char *self_path = NULL;
int self_path_size = readlink_malloc("/proc/self/exe", &self_path);
if (self_path_size < 0) {
fprintf(stderr, "cannot readlink /proc/self/exe: %s", strerror(-self_path_size));
}
// Make sure that we are being executed from the right location,
// i.e., `safeWrapperDir'. This is to prevent someone from creating
// i.e., `safe_wrapper_dir'. This is to prevent someone from creating
// hard link `X' from some other location, along with a false
// `X.real' file, to allow arbitrary programs from being executed
// with elevated capabilities.
int len = strlen(wrapperDir);
if (len > 0 && '/' == wrapperDir[len - 1])
int len = strlen(wrapper_dir);
if (len > 0 && '/' == wrapper_dir[len - 1])
--len;
assert(!strncmp(selfPath, wrapperDir, len));
assert('/' == wrapperDir[0]);
assert('/' == selfPath[len]);
assert(!strncmp(self_path, wrapper_dir, len));
assert('/' == wrapper_dir[0]);
assert('/' == self_path[len]);
// Make *really* *really* sure that we were executed as
// `selfPath', and not, say, as some other setuid program. That
// `self_path', and not, say, as some other setuid program. That
// is, our effective uid/gid should match the uid/gid of
// `selfPath'.
// `self_path'.
struct stat st;
assert(lstat(selfPath, &st) != -1);
assert(lstat(self_path, &st) != -1);
assert(!(st.st_mode & S_ISUID) || (st.st_uid == geteuid()));
assert(!(st.st_mode & S_ISGID) || (st.st_gid == getegid()));
@ -207,33 +199,35 @@ int main(int argc, char * * argv)
assert(!(st.st_mode & (S_IWGRP | S_IWOTH)));
// Read the path of the real (wrapped) program from <self>.real.
char realFN[PATH_MAX + 10];
int realFNSize = snprintf (realFN, sizeof(realFN), "%s.real", selfPath);
assert (realFNSize < sizeof(realFN));
char real_fn[PATH_MAX + 10];
int real_fn_size = snprintf(real_fn, sizeof(real_fn), "%s.real", self_path);
assert(real_fn_size < sizeof(real_fn));
int fdSelf = open(realFN, O_RDONLY);
assert (fdSelf != -1);
int fd_self = open(real_fn, O_RDONLY);
assert(fd_self != -1);
char sourceProg[PATH_MAX];
len = read(fdSelf, sourceProg, PATH_MAX);
assert (len != -1);
assert (len < sizeof(sourceProg));
assert (len > 0);
sourceProg[len] = 0;
char source_prog[PATH_MAX];
len = read(fd_self, source_prog, PATH_MAX);
assert(len != -1);
assert(len < sizeof(source_prog));
assert(len > 0);
source_prog[len] = 0;
close(fdSelf);
close(fd_self);
// Read the capabilities set on the wrapper and raise them in to
// the Ambient set so the program we're wrapping receives the
// the ambient set so the program we're wrapping receives the
// capabilities too!
make_caps_ambient(selfPath);
if (make_caps_ambient(self_path) != 0) {
free(self_path);
return 1;
}
free(self_path);
execve(sourceProg, argv, environ);
execve(source_prog, argv, environ);
fprintf(stderr, "%s: cannot run `%s': %s\n",
argv[0], sourceProg, strerror(errno));
argv[0], source_prog, strerror(errno));
exit(1);
return 1;
}

View File

@ -0,0 +1,21 @@
{ stdenv, linuxHeaders, parentWrapperDir, debug ? false }:
# For testing:
# $ nix-build -E 'with import <nixpkgs> {}; pkgs.callPackage ./wrapper.nix { parentWrapperDir = "/run/wrappers"; debug = true; }'
stdenv.mkDerivation {
name = "security-wrapper";
buildInputs = [ linuxHeaders ];
dontUnpack = true;
hardeningEnable = [ "pie" ];
CFLAGS = [
"-DWRAPPER_DIR=\"${parentWrapperDir}\""
] ++ (if debug then [
"-Werror" "-Og" "-g"
] else [
"-Wall" "-O2"
]);
dontStrip = debug;
installPhase = ''
mkdir -p $out/bin
$CC $CFLAGS ${./wrapper.c} -o $out/bin/security-wrapper
'';
}