python3Packages.jaxlib: refactor to support Nix-based builds (#151909)
* python3Packages.jaxlib: rename to `jaxlib-bin` Refactoring `jaxlib` to have a similar structure to `tensorflow` with the 'bin' and 'build' options. * python3Packages.jaxlib: init the 'build' variant at 0.1.75 Similar to `tensorflow-build`, now there's an option to build `jaxlib` using Nix-provided environment and dependencies. * python3Packages.jax: 0.2.24 -> 0.2.26 * Addressed review comments. * Fixed `cudaSupport` missing property on some arches. * Unified the versions of CUDA-related packages with TF. Co-authored-by: Samuel Ainsworth <skainsworth@gmail.com>
This commit is contained in:
parent
8efd318b10
commit
be52722509
12
pkgs/development/python-modules/jax/cache-fix.patch
Normal file
12
pkgs/development/python-modules/jax/cache-fix.patch
Normal file
@ -0,0 +1,12 @@
|
||||
diff --git a/jax/experimental/compilation_cache/file_system_cache.py b/jax/experimental/compilation_cache/file_system_cache.py
|
||||
index b85969de..92acd523 100644
|
||||
--- a/jax/experimental/compilation_cache/file_system_cache.py
|
||||
+++ b/jax/experimental/compilation_cache/file_system_cache.py
|
||||
@@ -33,6 +33,7 @@ class FileSystemCache(CacheInterface):
|
||||
path_to_key = os.path.join(self._path, key)
|
||||
if os.path.exists(path_to_key):
|
||||
with open(path_to_key, "rb") as file:
|
||||
+ os.utime(file.fileno())
|
||||
return file.read()
|
||||
else:
|
||||
return None
|
@ -13,7 +13,7 @@
|
||||
|
||||
buildPythonPackage rec {
|
||||
pname = "jax";
|
||||
version = "0.2.25";
|
||||
version = "0.2.26";
|
||||
format = "setuptools";
|
||||
|
||||
disabled = pythonOlder "3.7";
|
||||
@ -21,10 +21,15 @@ buildPythonPackage rec {
|
||||
src = fetchFromGitHub {
|
||||
owner = "google";
|
||||
repo = pname;
|
||||
rev = "jax-v${version}";
|
||||
sha256 = "0f32is9896g4shfhjipj3rlgpjxci5y607lp8gxlgsdzdqfpckm2";
|
||||
rev = "${pname}-v${version}";
|
||||
sha256 = "155hhwgq6axdrj4x4hw72322qv1wc068n4cv4z2vf5jpl05fg93g";
|
||||
};
|
||||
|
||||
patches = [
|
||||
# See https://github.com/google/jax/issues/7944
|
||||
./cache-fix.patch
|
||||
];
|
||||
|
||||
# jaxlib is _not_ included in propagatedBuildInputs because there are
|
||||
# different versions of jaxlib depending on the desired target hardware. The
|
||||
# JAX project ships separate wheels for CPU, GPU, and TPU. Currently only the
|
||||
|
90
pkgs/development/python-modules/jaxlib/bin.nix
Normal file
90
pkgs/development/python-modules/jaxlib/bin.nix
Normal file
@ -0,0 +1,90 @@
|
||||
# For the moment we only support the CPU and GPU backends of jaxlib. The TPU
|
||||
# backend will require some additional work. Those wheels are located here:
|
||||
# https://storage.googleapis.com/jax-releases/libtpu_releases.html.
|
||||
|
||||
# For future reference, the easiest way to test the GPU backend is to run
|
||||
# NIX_PATH=.. nix-shell -p python3 python3Packages.jax "python3Packages.jaxlib.override { cudaSupport = true; }"
|
||||
# export XLA_FLAGS=--xla_gpu_force_compilation_parallelism=1
|
||||
# python -c "from jax.lib import xla_bridge; assert xla_bridge.get_backend().platform == 'gpu'"
|
||||
# python -c "from jax import random; random.PRNGKey(0)"
|
||||
# python -c "from jax import random; x = random.normal(random.PRNGKey(0), (100, 100)); x @ x"
|
||||
# There's no convenient way to test the GPU backend in the derivation since the
|
||||
# nix build environment blocks access to the GPU. See also:
|
||||
# * https://github.com/google/jax/issues/971#issuecomment-508216439
|
||||
# * https://github.com/google/jax/issues/5723#issuecomment-913038780
|
||||
|
||||
{ addOpenGLRunpath, autoPatchelfHook, buildPythonPackage, config
|
||||
, fetchurl, isPy39, lib, stdenv
|
||||
# propagatedBuildInputs
|
||||
, absl-py, flatbuffers, scipy, cudatoolkit_11
|
||||
# Options:
|
||||
, cudaSupport ? config.cudaSupport or false
|
||||
}:
|
||||
|
||||
assert cudaSupport -> lib.versionAtLeast cudatoolkit_11.version "11.1";
|
||||
|
||||
let
|
||||
device = if cudaSupport then "gpu" else "cpu";
|
||||
in
|
||||
buildPythonPackage rec {
|
||||
pname = "jaxlib";
|
||||
version = "0.1.71";
|
||||
format = "wheel";
|
||||
|
||||
# At the time of writing (8/19/21), there are releases for 3.7-3.9. Supporting
|
||||
# all of them is a pain, so we focus on 3.9, the current nixpkgs python3
|
||||
# version.
|
||||
disabled = !isPy39;
|
||||
|
||||
src = {
|
||||
cpu = fetchurl {
|
||||
url = "https://storage.googleapis.com/jax-releases/nocuda/jaxlib-${version}-cp39-none-manylinux2010_x86_64.whl";
|
||||
sha256 = "sha256:0rqhs6qabydizlv5d3rb20dbv6612rr7dqfniy9r6h4kazdinsn6";
|
||||
};
|
||||
gpu = fetchurl {
|
||||
url = "https://storage.googleapis.com/jax-releases/cuda111/jaxlib-${version}+cuda111-cp39-none-manylinux2010_x86_64.whl";
|
||||
sha256 = "sha256:065kyzjsk9m84d138p99iymdiiicm1qz8a3iwxz8rspl43rwrw89";
|
||||
};
|
||||
}.${device};
|
||||
|
||||
# Prebuilt wheels are dynamically linked against things that nix can't find.
|
||||
# Run `autoPatchelfHook` to automagically fix them.
|
||||
nativeBuildInputs = [ autoPatchelfHook ] ++ lib.optional cudaSupport addOpenGLRunpath;
|
||||
# Dynamic link dependencies
|
||||
buildInputs = [ stdenv.cc.cc ];
|
||||
|
||||
# jaxlib contains shared libraries that open other shared libraries via dlopen
|
||||
# and these implicit dependencies are not recognized by ldd or
|
||||
# autoPatchelfHook. That means we need to sneak them into rpath. This step
|
||||
# must be done after autoPatchelfHook and the automatic stripping of
|
||||
# artifacts. autoPatchelfHook runs in postFixup and auto-stripping runs in the
|
||||
# patchPhase. Dependencies:
|
||||
# * libcudart.so.11.0 -> cudatoolkit_11.lib
|
||||
# * libcublas.so.11 -> cudatoolkit_11
|
||||
# * libcuda.so.1 -> opengl driver in /run/opengl-driver/lib
|
||||
preInstallCheck = lib.optional cudaSupport ''
|
||||
shopt -s globstar
|
||||
|
||||
addOpenGLRunpath $out/**/*.so
|
||||
|
||||
for file in $out/**/*.so; do
|
||||
rpath=$(patchelf --print-rpath $file)
|
||||
# For some reason `makeLibraryPath` on `cudatoolkit_11` maps to
|
||||
# <cudatoolkit_11.lib>/lib which is different from <cudatoolkit_11>/lib.
|
||||
patchelf --set-rpath "$rpath:${cudatoolkit_11}/lib:${lib.makeLibraryPath [ cudatoolkit_11.lib ]}" $file
|
||||
done
|
||||
'';
|
||||
|
||||
# pip dependencies and optionally cudatoolkit.
|
||||
propagatedBuildInputs = [ absl-py flatbuffers scipy ] ++ lib.optional cudaSupport cudatoolkit_11;
|
||||
|
||||
pythonImportsCheck = [ "jaxlib" ];
|
||||
|
||||
meta = with lib; {
|
||||
description = "XLA library for JAX";
|
||||
homepage = "https://github.com/google/jax";
|
||||
license = licenses.asl20;
|
||||
maintainers = with maintainers; [ samuela ];
|
||||
platforms = [ "x86_64-linux" ];
|
||||
};
|
||||
}
|
@ -1,90 +1,285 @@
|
||||
# For the moment we only support the CPU and GPU backends of jaxlib. The TPU
|
||||
# backend will require some additional work. Those wheels are located here:
|
||||
# https://storage.googleapis.com/jax-releases/libtpu_releases.html.
|
||||
{ lib
|
||||
, pkgs
|
||||
, stdenv
|
||||
|
||||
# For future reference, the easiest way to test the GPU backend is to run
|
||||
# NIX_PATH=.. nix-shell -p python3 python3Packages.jax "python3Packages.jaxlib.override { cudaSupport = true; }"
|
||||
# export XLA_FLAGS=--xla_gpu_force_compilation_parallelism=1
|
||||
# python -c "from jax.lib import xla_bridge; assert xla_bridge.get_backend().platform == 'gpu'"
|
||||
# python -c "from jax import random; random.PRNGKey(0)"
|
||||
# python -c "from jax import random; x = random.normal(random.PRNGKey(0), (100, 100)); x @ x"
|
||||
# There's no convenient way to test the GPU backend in the derivation since the
|
||||
# nix build environment blocks access to the GPU. See also:
|
||||
# * https://github.com/google/jax/issues/971#issuecomment-508216439
|
||||
# * https://github.com/google/jax/issues/5723#issuecomment-913038780
|
||||
# Build-time dependencies:
|
||||
, addOpenGLRunpath
|
||||
, bazel_4
|
||||
, binutils
|
||||
, buildBazelPackage
|
||||
, buildPythonPackage
|
||||
, cython
|
||||
, fetchFromGitHub
|
||||
, git
|
||||
, jsoncpp
|
||||
, pybind11
|
||||
, setuptools
|
||||
, symlinkJoin
|
||||
, wheel
|
||||
, which
|
||||
|
||||
{ addOpenGLRunpath, autoPatchelfHook, buildPythonPackage, config
|
||||
, fetchurl, isPy39, lib, stdenv
|
||||
# propagatedBuildInputs
|
||||
, absl-py, flatbuffers, scipy, cudatoolkit_11
|
||||
# Options:
|
||||
, cudaSupport ? config.cudaSupport or false
|
||||
# Build-time and runtime CUDA dependencies:
|
||||
, cudatoolkit ? null
|
||||
, cudnn ? null
|
||||
, nccl ? null
|
||||
|
||||
# Python dependencies:
|
||||
, absl-py
|
||||
, flatbuffers
|
||||
, numpy
|
||||
, scipy
|
||||
, six
|
||||
|
||||
# Runtime dependencies:
|
||||
, double-conversion
|
||||
, giflib
|
||||
, grpc
|
||||
, libjpeg_turbo
|
||||
, python
|
||||
, snappy
|
||||
, zlib
|
||||
|
||||
# CUDA flags:
|
||||
, cudaCapabilities ? [ "sm_35" "sm_50" "sm_60" "sm_70" "sm_75" "compute_80" ]
|
||||
, cudaSupport ? false
|
||||
|
||||
# MKL:
|
||||
, mklSupport ? true
|
||||
}:
|
||||
|
||||
assert cudaSupport -> lib.versionAtLeast cudatoolkit_11.version "11.1";
|
||||
|
||||
let
|
||||
device = if cudaSupport then "gpu" else "cpu";
|
||||
in
|
||||
buildPythonPackage rec {
|
||||
|
||||
pname = "jaxlib";
|
||||
version = "0.1.71";
|
||||
version = "0.1.75";
|
||||
|
||||
meta = with lib; {
|
||||
description = "JAX is Autograd and XLA, brought together for high-performance machine learning research.";
|
||||
homepage = "https://github.com/google/jax";
|
||||
license = licenses.asl20;
|
||||
maintainers = with maintainers; [ ndl ];
|
||||
};
|
||||
|
||||
cudatoolkit_joined = symlinkJoin {
|
||||
name = "${cudatoolkit.name}-merged";
|
||||
paths = [
|
||||
cudatoolkit.lib
|
||||
cudatoolkit.out
|
||||
] ++ lib.optionals (lib.versionOlder cudatoolkit.version "11") [
|
||||
# for some reason some of the required libs are in the targets/x86_64-linux
|
||||
# directory; not sure why but this works around it
|
||||
"${cudatoolkit}/targets/${stdenv.system}"
|
||||
];
|
||||
};
|
||||
|
||||
cudatoolkit_cc_joined = symlinkJoin {
|
||||
name = "${cudatoolkit.cc.name}-merged";
|
||||
paths = [
|
||||
cudatoolkit.cc
|
||||
binutils.bintools # for ar, dwp, nm, objcopy, objdump, strip
|
||||
];
|
||||
};
|
||||
|
||||
bazel-build = buildBazelPackage {
|
||||
name = "bazel-build-${pname}-${version}";
|
||||
|
||||
bazel = bazel_4;
|
||||
|
||||
src = fetchFromGitHub {
|
||||
owner = "google";
|
||||
repo = "jax";
|
||||
rev = "${pname}-v${version}";
|
||||
sha256 = "01ks4djbpjsxjy2zwdwv3h00sgwi4ps3jz75swddrw2f56zjdmw4";
|
||||
};
|
||||
|
||||
nativeBuildInputs = [
|
||||
cython
|
||||
pkgs.flatbuffers
|
||||
git
|
||||
setuptools
|
||||
wheel
|
||||
which
|
||||
];
|
||||
|
||||
buildInputs = [
|
||||
double-conversion
|
||||
giflib
|
||||
grpc
|
||||
jsoncpp
|
||||
libjpeg_turbo
|
||||
numpy
|
||||
pkgs.flatbuffers
|
||||
pkgs.protobuf
|
||||
pybind11
|
||||
scipy
|
||||
six
|
||||
snappy
|
||||
zlib
|
||||
] ++ lib.optionals cudaSupport [
|
||||
cudatoolkit
|
||||
cudnn
|
||||
];
|
||||
|
||||
postPatch = ''
|
||||
rm -f .bazelversion
|
||||
'';
|
||||
|
||||
bazelTarget = "//build:build_wheel";
|
||||
|
||||
removeRulesCC = false;
|
||||
|
||||
GCC_HOST_COMPILER_PREFIX = lib.optionalString cudaSupport "${cudatoolkit_cc_joined}/bin";
|
||||
GCC_HOST_COMPILER_PATH = lib.optionalString cudaSupport "${cudatoolkit_cc_joined}/bin/gcc";
|
||||
|
||||
preConfigure = ''
|
||||
# dummy ldconfig
|
||||
mkdir dummy-ldconfig
|
||||
echo "#!${stdenv.shell}" > dummy-ldconfig/ldconfig
|
||||
chmod +x dummy-ldconfig/ldconfig
|
||||
export PATH="$PWD/dummy-ldconfig:$PATH"
|
||||
cat <<CFG > ./.jax_configure.bazelrc
|
||||
build --strategy=Genrule=standalone
|
||||
build --repo_env PYTHON_BIN_PATH="${python}/bin/python"
|
||||
build --action_env=PYENV_ROOT
|
||||
build --python_path="${python}/bin/python"
|
||||
build --distinct_host_configuration=false
|
||||
'' + lib.optionalString cudaSupport ''
|
||||
build --action_env CUDA_TOOLKIT_PATH="${cudatoolkit_joined}"
|
||||
build --action_env CUDNN_INSTALL_PATH="${cudnn}"
|
||||
build --action_env TF_CUDA_PATHS="${cudatoolkit_joined},${cudnn},${nccl}"
|
||||
build --action_env TF_CUDA_VERSION="${lib.versions.majorMinor cudatoolkit.version}"
|
||||
build --action_env TF_CUDNN_VERSION="${lib.versions.major cudnn.version}"
|
||||
build:cuda --action_env TF_CUDA_COMPUTE_CAPABILITIES="${lib.concatStringsSep "," cudaCapabilities}"
|
||||
'' + ''
|
||||
CFG
|
||||
'';
|
||||
|
||||
# Copy-paste from TF derivation.
|
||||
# Most of these are not really used in jaxlib compilation but it's simpler to keep it
|
||||
# 'as is' so that it's more compatible with TF derivation.
|
||||
TF_SYSTEM_LIBS = lib.concatStringsSep "," [
|
||||
"absl_py"
|
||||
"astor_archive"
|
||||
"astunparse_archive"
|
||||
"boringssl"
|
||||
# Not packaged in nixpkgs
|
||||
# "com_github_googleapis_googleapis"
|
||||
# "com_github_googlecloudplatform_google_cloud_cpp"
|
||||
"com_github_grpc_grpc"
|
||||
"com_google_protobuf"
|
||||
# Fails with the error: external/org_tensorflow/tensorflow/core/profiler/utils/tf_op_utils.cc:46:49: error: no matching function for call to 're2::RE2::FullMatch(absl::lts_2020_02_25::string_view&, re2::RE2&)'
|
||||
# "com_googlesource_code_re2"
|
||||
"curl"
|
||||
"cython"
|
||||
"dill_archive"
|
||||
"double_conversion"
|
||||
"enum34_archive"
|
||||
"flatbuffers"
|
||||
"functools32_archive"
|
||||
"gast_archive"
|
||||
"gif"
|
||||
"hwloc"
|
||||
"icu"
|
||||
"jsoncpp_git"
|
||||
"libjpeg_turbo"
|
||||
"lmdb"
|
||||
"nasm"
|
||||
# "nsync" # not packaged in nixpkgs
|
||||
"opt_einsum_archive"
|
||||
"org_sqlite"
|
||||
"pasta"
|
||||
"pcre"
|
||||
"png"
|
||||
"pybind11"
|
||||
"six_archive"
|
||||
"snappy"
|
||||
"tblib_archive"
|
||||
"termcolor_archive"
|
||||
"typing_extensions_archive"
|
||||
"wrapt"
|
||||
"zlib"
|
||||
];
|
||||
|
||||
# Make sure Bazel knows about our configuration flags during fetching so that the
|
||||
# relevant dependencies can be downloaded.
|
||||
bazelFetchFlags = bazel-build.bazelBuildFlags;
|
||||
|
||||
bazelBuildFlags = [
|
||||
"-c opt"
|
||||
] ++ lib.optional (stdenv.targetPlatform.isx86_64 && stdenv.targetPlatform.isUnix) [
|
||||
"--config=avx_posix"
|
||||
] ++ lib.optional cudaSupport [
|
||||
"--config=cuda"
|
||||
] ++ lib.optional mklSupport [
|
||||
"--config=mkl_open_source_only"
|
||||
];
|
||||
|
||||
fetchAttrs = {
|
||||
sha256 =
|
||||
if cudaSupport then
|
||||
"1lyipbflqd1y5cdj4hdml5h1inbr0wwfgp6xw5p5623qv3im16lh"
|
||||
else
|
||||
"09kapzpfwnlr6ghmgwac232bqf2a57mm1brz4cvfx8mlg8bbaw63";
|
||||
};
|
||||
|
||||
buildAttrs = {
|
||||
outputs = [ "out" ];
|
||||
|
||||
# Note: we cannot do most of this patching at `patch` phase as the deps are not available yet.
|
||||
# 1) Fix pybind11 include paths.
|
||||
# 2) Force static protobuf linkage to prevent crashes on loading multiple extensions
|
||||
# in the same python program due to duplicate protobuf DBs.
|
||||
# 3) Patch python path in the compiler driver.
|
||||
preBuild = ''
|
||||
for src in ./jaxlib/*.{cc,h}; do
|
||||
sed -i 's@include/pybind11@pybind11@g' $src
|
||||
done
|
||||
sed -i 's@-lprotobuf@-l:libprotobuf.a@' ../output/external/org_tensorflow/third_party/systemlibs/protobuf.BUILD
|
||||
sed -i 's@-lprotoc@-l:libprotoc.a@' ../output/external/org_tensorflow/third_party/systemlibs/protobuf.BUILD
|
||||
'' + lib.optionalString cudaSupport ''
|
||||
patchShebangs ../output/external/org_tensorflow/third_party/gpus/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc.tpl
|
||||
'';
|
||||
|
||||
installPhase = ''
|
||||
./bazel-bin/build/build_wheel --output_path=$out --cpu=${stdenv.targetPlatform.linuxArch}
|
||||
'';
|
||||
};
|
||||
|
||||
inherit meta;
|
||||
};
|
||||
|
||||
in
|
||||
buildPythonPackage {
|
||||
inherit meta pname version;
|
||||
format = "wheel";
|
||||
|
||||
# At the time of writing (8/19/21), there are releases for 3.7-3.9. Supporting
|
||||
# all of them is a pain, so we focus on 3.9, the current nixpkgs python3
|
||||
# version.
|
||||
disabled = !isPy39;
|
||||
src = "${bazel-build}/jaxlib-${version}-cp${builtins.replaceStrings ["."] [""] python.pythonVersion}-none-manylinux2010_${stdenv.targetPlatform.linuxArch}.whl";
|
||||
|
||||
src = {
|
||||
cpu = fetchurl {
|
||||
url = "https://storage.googleapis.com/jax-releases/nocuda/jaxlib-${version}-cp39-none-manylinux2010_x86_64.whl";
|
||||
sha256 = "sha256:0rqhs6qabydizlv5d3rb20dbv6612rr7dqfniy9r6h4kazdinsn6";
|
||||
};
|
||||
gpu = fetchurl {
|
||||
url = "https://storage.googleapis.com/jax-releases/cuda111/jaxlib-${version}+cuda111-cp39-none-manylinux2010_x86_64.whl";
|
||||
sha256 = "sha256:065kyzjsk9m84d138p99iymdiiicm1qz8a3iwxz8rspl43rwrw89";
|
||||
};
|
||||
}.${device};
|
||||
|
||||
# Prebuilt wheels are dynamically linked against things that nix can't find.
|
||||
# Run `autoPatchelfHook` to automagically fix them.
|
||||
nativeBuildInputs = [ autoPatchelfHook ] ++ lib.optional cudaSupport addOpenGLRunpath;
|
||||
# Dynamic link dependencies
|
||||
buildInputs = [ stdenv.cc.cc ];
|
||||
|
||||
# jaxlib contains shared libraries that open other shared libraries via dlopen
|
||||
# and these implicit dependencies are not recognized by ldd or
|
||||
# autoPatchelfHook. That means we need to sneak them into rpath. This step
|
||||
# must be done after autoPatchelfHook and the automatic stripping of
|
||||
# artifacts. autoPatchelfHook runs in postFixup and auto-stripping runs in the
|
||||
# patchPhase. Dependencies:
|
||||
# * libcudart.so.11.0 -> cudatoolkit_11.lib
|
||||
# * libcublas.so.11 -> cudatoolkit_11
|
||||
# * libcuda.so.1 -> opengl driver in /run/opengl-driver/lib
|
||||
preInstallCheck = lib.optional cudaSupport ''
|
||||
shopt -s globstar
|
||||
|
||||
addOpenGLRunpath $out/**/*.so
|
||||
|
||||
for file in $out/**/*.so; do
|
||||
rpath=$(patchelf --print-rpath $file)
|
||||
# For some reason `makeLibraryPath` on `cudatoolkit_11` maps to
|
||||
# <cudatoolkit_11.lib>/lib which is different from <cudatoolkit_11>/lib.
|
||||
patchelf --set-rpath "$rpath:${cudatoolkit_11}/lib:${lib.makeLibraryPath [ cudatoolkit_11.lib ]}" $file
|
||||
postInstall = lib.optionalString cudaSupport ''
|
||||
find $out -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do
|
||||
addOpenGLRunpath "$lib"
|
||||
patchelf --set-rpath "${cudatoolkit}/lib:${cudatoolkit.lib}/lib:${cudnn}/lib:${nccl}/lib:$(patchelf --print-rpath "$lib")" "$lib"
|
||||
done
|
||||
'';
|
||||
|
||||
# pip dependencies and optionally cudatoolkit.
|
||||
propagatedBuildInputs = [ absl-py flatbuffers scipy ] ++ lib.optional cudaSupport cudatoolkit_11;
|
||||
nativeBuildInputs = lib.optional cudaSupport addOpenGLRunpath;
|
||||
|
||||
propagatedBuildInputs = [
|
||||
absl-py
|
||||
double-conversion
|
||||
flatbuffers
|
||||
giflib
|
||||
grpc
|
||||
jsoncpp
|
||||
libjpeg_turbo
|
||||
numpy
|
||||
scipy
|
||||
six
|
||||
snappy
|
||||
];
|
||||
|
||||
pythonImportsCheck = [ "jaxlib" ];
|
||||
|
||||
meta = with lib; {
|
||||
description = "XLA library for JAX";
|
||||
homepage = "https://github.com/google/jax";
|
||||
license = licenses.asl20;
|
||||
maintainers = with maintainers; [ samuela ];
|
||||
platforms = [ "x86_64-linux" ];
|
||||
};
|
||||
# Without it there are complaints about libcudart.so.11.0 not being found
|
||||
# because RPATH path entries added above are stripped.
|
||||
dontPatchELF = cudaSupport;
|
||||
}
|
||||
|
@ -100,6 +100,12 @@ let
|
||||
|
||||
disabledIf = x: drv: if x then disabled drv else drv;
|
||||
|
||||
# CUDA-related packages that are compatible with the currently packaged version
|
||||
# of TensorFlow, used to keep these versions in sync in related packages like `jaxlib`.
|
||||
tensorflow_compat_cudatoolkit = pkgs.cudatoolkit_11_2;
|
||||
tensorflow_compat_cudnn = pkgs.cudnn_cudatoolkit_11_2;
|
||||
tensorflow_compat_nccl = pkgs.nccl_cudatoolkit_11;
|
||||
|
||||
in {
|
||||
|
||||
inherit pkgs stdenv;
|
||||
@ -4053,7 +4059,17 @@ in {
|
||||
|
||||
jax = callPackage ../development/python-modules/jax { };
|
||||
|
||||
jaxlib = callPackage ../development/python-modules/jaxlib { };
|
||||
jaxlib-bin = callPackage ../development/python-modules/jaxlib/bin.nix { };
|
||||
|
||||
jaxlib-build = callPackage ../development/python-modules/jaxlib {
|
||||
# Some platforms don't have `cudaSupport` defined, hence the need for 'or false'.
|
||||
cudaSupport = pkgs.config.cudaSupport or false;
|
||||
cudatoolkit = tensorflow_compat_cudatoolkit;
|
||||
cudnn = tensorflow_compat_cudnn;
|
||||
nccl = tensorflow_compat_nccl;
|
||||
};
|
||||
|
||||
jaxlib = self.jaxlib-build;
|
||||
|
||||
JayDeBeApi = callPackage ../development/python-modules/JayDeBeApi { };
|
||||
|
||||
@ -9453,16 +9469,16 @@ in {
|
||||
|
||||
tensorflow-bin = callPackage ../development/python-modules/tensorflow/bin.nix {
|
||||
cudaSupport = pkgs.config.cudaSupport or false;
|
||||
cudatoolkit = pkgs.cudatoolkit_11_2;
|
||||
cudnn = pkgs.cudnn_cudatoolkit_11_2;
|
||||
cudatoolkit = tensorflow_compat_cudatoolkit;
|
||||
cudnn = tensorflow_compat_cudnn;
|
||||
};
|
||||
|
||||
tensorflow-build = callPackage ../development/python-modules/tensorflow {
|
||||
inherit (pkgs.darwin) cctools;
|
||||
cudaSupport = pkgs.config.cudaSupport or false;
|
||||
cudatoolkit = pkgs.cudatoolkit_11_2;
|
||||
cudnn = pkgs.cudnn_cudatoolkit_11_2;
|
||||
nccl = pkgs.nccl_cudatoolkit_11;
|
||||
cudatoolkit = tensorflow_compat_cudatoolkit;
|
||||
cudnn = tensorflow_compat_cudnn;
|
||||
nccl = tensorflow_compat_nccl;
|
||||
inherit (pkgs.darwin.apple_sdk.frameworks) Foundation Security;
|
||||
flatbuffers-core = pkgs.flatbuffers;
|
||||
flatbuffers-python = self.flatbuffers;
|
||||
|
Loading…
Reference in New Issue
Block a user