nixpkgs/pkgs/games/mnemosyne/default.nix

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

82 lines
2.2 KiB
Nix
Raw Normal View History

{ python
2023-03-06 15:03:36 +00:00
, fetchurl
, anki
}:
2017-12-18 10:07:46 +00:00
python.pkgs.buildPythonApplication rec {
pname = "mnemosyne";
2023-11-20 14:10:38 +00:00
version = "2.10.1";
2017-12-18 10:07:46 +00:00
src = fetchurl {
2017-12-18 10:07:46 +00:00
url = "mirror://sourceforge/project/mnemosyne-proj/mnemosyne/mnemosyne-${version}/Mnemosyne-${version}.tar.gz";
2023-11-20 14:10:38 +00:00
sha256 = "sha256-zI79iuRXb5S0Y87KfdG+HKc0XVNQOAcBR7Zt/OdaBP4=";
};
2017-12-18 10:07:46 +00:00
nativeBuildInputs = with python.pkgs; [ pyqtwebengine.wrapQtAppsHook ];
buildInputs = [ anki ];
2017-12-18 10:07:46 +00:00
propagatedBuildInputs = with python.pkgs; [
cheroot
cherrypy
googletrans
gtts
matplotlib
pyopengl
2023-11-20 14:10:38 +00:00
pyqt6
pyqt6-webengine
argon2-cffi
webob
];
2017-12-18 10:07:46 +00:00
prePatch = ''
2023-03-06 15:03:36 +00:00
substituteInPlace setup.py \
--replace '("", ["/usr/local/bin/mplayer"])' ""
'';
2017-12-18 10:07:46 +00:00
2023-03-06 15:03:36 +00:00
# No tests/ directory in tarball
doCheck = false;
postInstall = ''
2020-04-11 01:16:16 +01:00
mkdir -p $out/share/applications
mv mnemosyne.desktop $out/share/applications
'';
2017-12-18 10:07:46 +00:00
dontWrapQtApps = true;
makeWrapperArgs = [
"\${qtWrapperArgs[@]}"
];
meta = {
2020-02-24 00:43:25 +00:00
homepage = "https://mnemosyne-proj.org/";
2014-11-11 13:20:43 +00:00
description = "Spaced-repetition software";
mainProgram = "mnemosyne";
longDescription = ''
The Mnemosyne Project has two aspects:
* It's a free flash-card tool which optimizes your learning process.
* It's a research project into the nature of long-term memory.
We strive to provide a clear, uncluttered piece of software, easy to use
and to understand for newbies, but still infinitely customisable through
plugins and scripts for power users.
## Efficient learning
Mnemosyne uses a sophisticated algorithm to schedule the best time for
a card to come up for review. Difficult cards that you tend to forget
quickly will be scheduled more often, while Mnemosyne won't waste your
time on things you remember well.
## Memory research
If you want, anonymous statistics on your learning process can be
uploaded to a central server for analysis. This data will be valuable to
study the behaviour of our memory over a very long time period. The
results will be used to improve the scheduling algorithms behind the
2015-03-10 14:38:59 +00:00
software even further.
'';
};
}